Apache Fury实现Scala与Java跨语言序列化的技术方案
2025-06-25 11:00:39作者:霍妲思
背景介绍
在现代分布式系统和微服务架构中,跨语言序列化是一个常见需求。Apache Fury作为一个高性能的序列化框架,需要处理不同编程语言间的数据交换问题。本文将重点探讨如何使用Apache Fury实现Scala集合类型和case class与Java对象之间的序列化与反序列化。
核心挑战
Scala和Java虽然都运行在JVM上,但它们的集合类型系统存在显著差异:
- Scala的Seq与Java的List接口不直接兼容
- Scala的case class与Java的POJO在实现机制上不同
- 类型擦除导致的运行时类型信息丢失问题
解决方案
Apache Fury通过自定义序列化器来解决这些跨语言序列化问题。以下是一个典型实现方案:
自定义集合序列化器
对于Scala的Seq类型,可以继承AbstractCollectionSerializer实现跨语言序列化:
public class ScalaSeqSerializer extends AbstractCollectionSerializer {
@Override
public Collection onCollectionWrite(MemoryBuffer buffer, Object value) {
// 将Scala Seq转换为Java集合
scala.collection.Seq seq = (scala.collection.Seq)value;
ArrayList list = new ArrayList(seq.size());
seq.foreach(new AbstractFunction1() {
public void apply(Object elem) {
list.add(elem);
}
});
return list;
}
@Override
public Object read(MemoryBuffer buffer) {
// 反序列化为Java集合
Collection collection = super.read(buffer);
// 转换为Scala Seq
return scala.collection.JavaConverters.collectionAsScalaIterable(collection).toSeq();
}
}
Case Class处理方案
对于Scala case class,可以采用两种策略:
- 自动映射:利用反射获取case class的所有字段
- 手动注册:为特定case class编写专门的序列化器
public class CaseClassSerializer extends Serializer {
private Class<?> caseClass;
private Method[] productElements;
public CaseClassSerializer(Fury fury, Class<?> cls) {
super(fury, cls);
this.caseClass = cls;
// 获取case class的所有字段访问方法
this.productElements = Arrays.stream(cls.getMethods())
.filter(m -> m.getName().startsWith("productElement"))
.toArray(Method[]::new);
}
@Override
public void write(MemoryBuffer buffer, Object value) {
try {
for (Method m : productElements) {
Object fieldValue = m.invoke(value);
fury.writeRef(buffer, fieldValue);
}
} catch (Exception e) {
throw new RuntimeException(e);
}
}
@Override
public Object read(MemoryBuffer buffer) {
try {
Object[] args = new Object[productElements.length];
for (int i = 0; i < args.length; i++) {
args[i] = fury.readRef(buffer);
}
// 使用Scala反射创建case class实例
return ScalaReflect.newInstance(caseClass, args);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
性能优化建议
- 缓存序列化器:为常用类型缓存序列化器实例
- 预分配缓冲区:根据类型元数据预估序列化大小
- 避免装箱:对原始类型采用特殊处理
- 懒加载:延迟初始化不常用的序列化组件
实际应用场景
这种跨语言序列化方案特别适用于:
- Scala编写的微服务与Java服务间的通信
- Spark/Flink等大数据框架中Scala与Java组件的交互
- 混合技术栈系统中的数据持久化
总结
Apache Fury通过灵活的序列化器机制,为Scala和Java之间的数据交换提供了高效解决方案。开发者可以根据具体需求选择自动映射或自定义序列化器的方式,在保证类型安全的同时实现高性能的跨语言序列化。随着JVM生态的多样化发展,这类跨语言序列化技术将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217