Apache Fury 中 Scala 集合与 Java 对象的跨语言序列化方案
2025-06-25 01:14:54作者:苗圣禹Peter
Apache Fury 作为一款高性能的序列化框架,提供了跨语言序列化的能力。本文将深入探讨如何利用 Fury 实现 Scala 中的 Seq 集合和 case class 的序列化,并在 Java 端进行反序列化为对应的 Java 对象。
跨语言序列化挑战
在 Scala 和 Java 混合开发环境中,经常需要在两种语言间传递数据结构。Scala 的 Seq 集合和 case class 是其特有的数据结构,直接序列化后在 Java 端反序列化会遇到类型不匹配的问题。Fury 通过自定义序列化器机制,为这类场景提供了优雅的解决方案。
自定义序列化器实现
Fury 框架允许开发者通过继承 AbstractCollectionSerializer 类来实现自定义的集合序列化逻辑。对于 Scala 的 Seq 集合,可以创建一个专门的序列化器:
public class ScalaSeqSerializer extends AbstractCollectionSerializer {
@Override
public Collection onCollectionWrite(MemoryBuffer buffer, Object value) {
// 将Scala Seq转换为Java集合以便序列化
Seq<?> seq = (Seq<?>) value;
ArrayList<Object> javaList = new ArrayList<>(seq.size());
seq.foreach(javaList::add);
return javaList;
}
@Override
public Object read(MemoryBuffer buffer) {
// 反序列化逻辑
return super.read(buffer);
}
@Override
public Collection newCollection(MemoryBuffer buffer) {
int numElements = buffer.readVarUint32Small7();
setNumElements(numElements);
ArrayList arrayList = new ArrayList(numElements);
fury.getRefResolver().reference(arrayList);
return arrayList;
}
@Override
public Object onCollectionRead(Collection collection) {
// 将Java集合转换回Scala Seq
return JavaConverters.asScalaBufferConverter((List<?>) collection).asScala().toSeq();
}
}
Case Class 的序列化处理
对于 Scala 的 case class,Fury 同样支持通过自定义序列化器实现跨语言转换:
public class CaseClassSerializer extends Serializer<Object> {
private final Class<?> javaEquivalentClass;
public CaseClassSerializer(Fury fury, Class<?> type) {
super(fury, type);
// 预先定义好Scala case class对应的Java类
this.javaEquivalentClass = resolveJavaEquivalent(type);
}
@Override
public void write(MemoryBuffer buffer, Object value) {
// 将case class转换为Java对象并序列化
Object javaObject = convertToJava(value);
fury.writeRef(buffer, javaObject);
}
@Override
public Object read(MemoryBuffer buffer) {
// 反序列化为Java对象
Object javaObject = fury.readRef(buffer);
// 如果需要可以转换回Scala case class
return convertToScala(javaObject);
}
private Object convertToJava(Object scalaObj) {
// 实现转换逻辑
}
private Object convertToScala(Object javaObj) {
// 实现转换逻辑
}
}
最佳实践
-
类型注册:在使用前,需要将自定义序列化器注册到 Fury 实例中:
Fury fury = Fury.builder() .withLanguage(Language.JAVA) .registerSerializer(Seq.class, new ScalaSeqSerializer(fury, Seq.class)) .build(); -
性能优化:对于频繁使用的类型,可以缓存转换结果以提高性能。
-
兼容性考虑:确保 Scala 和 Java 端的类结构保持同步,特别是字段名称和类型。
-
空值处理:在序列化器中妥善处理 null 值情况。
总结
Apache Fury 的灵活序列化机制为 Scala 和 Java 之间的数据交换提供了强大支持。通过实现自定义序列化器,开发者可以无缝地在两种语言间传递复杂数据结构,同时保持类型安全和性能。这种方案特别适合微服务架构中不同语言服务间的通信,以及大数据处理管道中 Scala 和 Java 组件的协同工作。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217