Curriculum Labeling: 半监督学习中伪标签法的再探索
2024-09-11 06:16:49作者:曹令琨Iris
项目介绍
Curriculum Labeling 是一种改进的半监督学习方法,由 Paola Cascante-Bonilla、Fuwen Tan、Yanjun Qi 和 Vicente Ordonez 在 2021 年的 AAAI 会议上提出。该方法基于伪标注的思想,旨在通过一个自我训练循环,在有限的标注数据和大量的未标注数据之间迭代,不断提升模型性能。它通过逐步利用模型预测给未标注样本添加“课程”式的伪标签,进而在无监督样本文本中学习更强大的特征表示。
项目快速启动
要快速开始使用 Curriculum Labeling,首先确保你的开发环境已安装了必要的库,如 TensorFlow 或 PyTorch(具体依赖于仓库的最新要求)。以下是基本的快速入门步骤:
-
克隆项目到本地
git clone https://github.com/uvavision/Curriculum-Labeling.git -
安装依赖 根据项目的
requirements.txt文件安装所有必需的Python包。pip install -r Curriculum-Labeling/requirements.txt -
配置实验 编辑配置文件以设置数据路径、模型参数等。
-
运行示例 假设有一个基础脚本
main.py用于开始训练,你将这样启动:python main.py --data_path /path/to/your/data --mode semi_supervised注意,实际命令可能需要根据项目的更新调整参数。
应用案例与最佳实践
在实际应用中,Curriculum Labeling 方法非常适合那些标注数据稀缺但可获取大量未标注数据的场景,例如图像分类、自然语言处理任务。最佳实践包括:
- 数据增强策略:选择适合任务的数据增强级别(轻度、中度或重度),可以显著影响模型的学习效果。
- 迭代周期:合理控制自我训练的迭代次数,避免过拟合伪标签错误。
- 软加权平均(SWA):在训练过程中的特定阶段启用SWA可以提升模型的泛化能力。
- 调试与验证:利用--debug选项在早期阶段监控测试精度,确保模型按预期工作。
典型生态项目
由于此项目专注于半监督学习,其直接相关的生态项目通常涉及机器学习与计算机视觉领域内的其他半监督或强化学习技术。开发者和研究者可能会结合使用以下工具或框架来扩展其应用范围:
- TensorFlow或PyTorch社区的其他半监督学习库:这些提供了额外的算法实现,可以与Curriculum Labeling方法互补。
- 数据增强库如
Albumentations,增强未标注数据的多样性,提高模型性能。 - 评估框架,例如
EvalAI,用于标准化地衡量半监督学习模型的表现。
请注意,具体的生态系统合作项目需依据最新的开源社区动态和相关论文更新进行查找和集成。参与这些社区讨论和贡献可以帮助深化对该方法的理解和应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1