Curriculum Labeling: 半监督学习中伪标签法的再探索
2024-09-11 07:15:21作者:曹令琨Iris
项目介绍
Curriculum Labeling 是一种改进的半监督学习方法,由 Paola Cascante-Bonilla、Fuwen Tan、Yanjun Qi 和 Vicente Ordonez 在 2021 年的 AAAI 会议上提出。该方法基于伪标注的思想,旨在通过一个自我训练循环,在有限的标注数据和大量的未标注数据之间迭代,不断提升模型性能。它通过逐步利用模型预测给未标注样本添加“课程”式的伪标签,进而在无监督样本文本中学习更强大的特征表示。
项目快速启动
要快速开始使用 Curriculum Labeling
,首先确保你的开发环境已安装了必要的库,如 TensorFlow 或 PyTorch(具体依赖于仓库的最新要求)。以下是基本的快速入门步骤:
-
克隆项目到本地
git clone https://github.com/uvavision/Curriculum-Labeling.git
-
安装依赖 根据项目的
requirements.txt
文件安装所有必需的Python包。pip install -r Curriculum-Labeling/requirements.txt
-
配置实验 编辑配置文件以设置数据路径、模型参数等。
-
运行示例 假设有一个基础脚本
main.py
用于开始训练,你将这样启动:python main.py --data_path /path/to/your/data --mode semi_supervised
注意,实际命令可能需要根据项目的更新调整参数。
应用案例与最佳实践
在实际应用中,Curriculum Labeling 方法非常适合那些标注数据稀缺但可获取大量未标注数据的场景,例如图像分类、自然语言处理任务。最佳实践包括:
- 数据增强策略:选择适合任务的数据增强级别(轻度、中度或重度),可以显著影响模型的学习效果。
- 迭代周期:合理控制自我训练的迭代次数,避免过拟合伪标签错误。
- 软加权平均(SWA):在训练过程中的特定阶段启用SWA可以提升模型的泛化能力。
- 调试与验证:利用--debug选项在早期阶段监控测试精度,确保模型按预期工作。
典型生态项目
由于此项目专注于半监督学习,其直接相关的生态项目通常涉及机器学习与计算机视觉领域内的其他半监督或强化学习技术。开发者和研究者可能会结合使用以下工具或框架来扩展其应用范围:
- TensorFlow或PyTorch社区的其他半监督学习库:这些提供了额外的算法实现,可以与Curriculum Labeling方法互补。
- 数据增强库如
Albumentations
,增强未标注数据的多样性,提高模型性能。 - 评估框架,例如
EvalAI
,用于标准化地衡量半监督学习模型的表现。
请注意,具体的生态系统合作项目需依据最新的开源社区动态和相关论文更新进行查找和集成。参与这些社区讨论和贡献可以帮助深化对该方法的理解和应用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5