AMI 开源项目教程
2024-09-13 13:58:20作者:裴锟轩Denise
项目介绍
AMI(Analyze Medical Images)是一个用于分析医学图像的开源项目,由FNNDSC(Federated Neuroscience Datasets Collaborative)开发和维护。AMI 提供了强大的工具和库,帮助开发者处理和分析医学图像数据,特别适用于神经科学领域的研究。
AMI 项目的主要特点包括:
- 多模态支持:支持多种医学图像格式,如DICOM、NIFTI等。
- 丰富的图像处理功能:提供了图像分割、配准、可视化等功能。
- 易于集成:可以轻松集成到现有的医学图像处理工作流中。
项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Node.js (建议版本 >= 14.x)
- npm (建议版本 >= 6.x)
安装 AMI
-
克隆项目仓库:
git clone https://github.com/FNNDSC/ami.git cd ami -
安装依赖:
npm install -
启动示例应用:
npm start这将启动一个本地服务器,并在浏览器中打开一个示例页面,展示如何使用 AMI 进行医学图像处理。
示例代码
以下是一个简单的示例代码,展示如何使用 AMI 加载和显示一个 DICOM 图像:
import { AMI } from 'ami.js';
// 创建一个视图
const view = new AMI.View();
// 加载 DICOM 文件
AMI.DicomLoader.load('path/to/dicom/file.dcm', (result) => {
if (result) {
view.addSeries(result);
view.render();
}
});
应用案例和最佳实践
应用案例
AMI 在多个医学图像处理场景中得到了广泛应用,例如:
- 神经影像分析:用于脑部图像的分割和配准。
- 肿瘤检测:通过图像处理技术辅助医生进行肿瘤检测和定位。
- 医学教育:用于创建交互式的医学图像教学工具。
最佳实践
- 数据预处理:在进行图像分析之前,确保图像数据的预处理步骤(如去噪、归一化)已经完成。
- 模块化开发:将复杂的图像处理任务分解为多个模块,便于维护和扩展。
- 性能优化:使用 WebGL 等技术优化图像渲染性能,特别是在处理大量数据时。
典型生态项目
AMI 作为医学图像处理领域的一个重要工具,与其他开源项目和工具形成了丰富的生态系统,例如:
- 3D Slicer:一个强大的医学图像处理平台,可以与 AMI 结合使用,提供更全面的图像分析功能。
- CornerstoneJS:一个用于医学图像可视化的 JavaScript 库,可以与 AMI 集成,提供更灵活的图像显示和交互功能。
- OHIF Viewer:一个基于 Web 的 DICOM 图像查看器,可以与 AMI 结合使用,提供更强大的图像处理和分析功能。
通过这些生态项目的结合,AMI 可以更好地满足不同场景下的医学图像处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
183
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.86 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70