AMI 开源项目教程
2024-09-13 04:17:36作者:裴锟轩Denise
项目介绍
AMI(Analyze Medical Images)是一个用于分析医学图像的开源项目,由FNNDSC(Federated Neuroscience Datasets Collaborative)开发和维护。AMI 提供了强大的工具和库,帮助开发者处理和分析医学图像数据,特别适用于神经科学领域的研究。
AMI 项目的主要特点包括:
- 多模态支持:支持多种医学图像格式,如DICOM、NIFTI等。
- 丰富的图像处理功能:提供了图像分割、配准、可视化等功能。
- 易于集成:可以轻松集成到现有的医学图像处理工作流中。
项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Node.js (建议版本 >= 14.x)
- npm (建议版本 >= 6.x)
安装 AMI
-
克隆项目仓库:
git clone https://github.com/FNNDSC/ami.git cd ami -
安装依赖:
npm install -
启动示例应用:
npm start这将启动一个本地服务器,并在浏览器中打开一个示例页面,展示如何使用 AMI 进行医学图像处理。
示例代码
以下是一个简单的示例代码,展示如何使用 AMI 加载和显示一个 DICOM 图像:
import { AMI } from 'ami.js';
// 创建一个视图
const view = new AMI.View();
// 加载 DICOM 文件
AMI.DicomLoader.load('path/to/dicom/file.dcm', (result) => {
if (result) {
view.addSeries(result);
view.render();
}
});
应用案例和最佳实践
应用案例
AMI 在多个医学图像处理场景中得到了广泛应用,例如:
- 神经影像分析:用于脑部图像的分割和配准。
- 肿瘤检测:通过图像处理技术辅助医生进行肿瘤检测和定位。
- 医学教育:用于创建交互式的医学图像教学工具。
最佳实践
- 数据预处理:在进行图像分析之前,确保图像数据的预处理步骤(如去噪、归一化)已经完成。
- 模块化开发:将复杂的图像处理任务分解为多个模块,便于维护和扩展。
- 性能优化:使用 WebGL 等技术优化图像渲染性能,特别是在处理大量数据时。
典型生态项目
AMI 作为医学图像处理领域的一个重要工具,与其他开源项目和工具形成了丰富的生态系统,例如:
- 3D Slicer:一个强大的医学图像处理平台,可以与 AMI 结合使用,提供更全面的图像分析功能。
- CornerstoneJS:一个用于医学图像可视化的 JavaScript 库,可以与 AMI 集成,提供更灵活的图像显示和交互功能。
- OHIF Viewer:一个基于 Web 的 DICOM 图像查看器,可以与 AMI 结合使用,提供更强大的图像处理和分析功能。
通过这些生态项目的结合,AMI 可以更好地满足不同场景下的医学图像处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143