基于Scikit-learn的短信垃圾邮件分类案例研究
2025-07-10 15:20:13作者:乔或婵
引言
在当今数字时代,垃圾短信(Spam)已成为困扰用户的一大问题。本文将介绍如何使用Python的Scikit-learn库构建一个短信垃圾邮件分类器。我们将从数据准备开始,逐步讲解特征提取、模型训练和评估的完整流程。
数据准备
首先我们需要加载并预处理短信数据集。该数据集包含两类短信:
- 正常短信(Ham)
- 垃圾短信(Spam)
import os
with open(os.path.join("datasets", "smsspam", "SMSSpamCollection")) as f:
lines = [line.strip().split("\t") for line in f.readlines()]
text = [x[1] for x in lines] # 短信内容
y = [int(x[0] == "spam") for x in lines] # 标签(0=ham, 1=spam)
查看数据分布:
import numpy as np
print('正常和垃圾短信数量:', np.bincount(y))
数据分割
将数据集划分为训练集和测试集:
from sklearn.model_selection import train_test_split
text_train, text_test, y_train, y_test = train_test_split(
text, y, random_state=42, test_size=0.25, stratify=y)
特征提取
文本数据不能直接用于机器学习算法,需要先转换为数值特征。我们使用词袋模型(Bag-of-Words):
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
vectorizer.fit(text_train)
X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)
CountVectorizer默认会:
- 将文本转换为小写
- 提取至少包含2个字母的单词
- 移除标点符号
- 构建词汇表
模型训练
使用逻辑回归作为分类器:
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train, y_train)
模型评估
评估模型在测试集上的表现:
print("测试集准确率:", clf.score(X_test, y_test))
print("训练集准确率:", clf.score(X_train, y_train))
特征重要性分析
可视化对分类影响最大的词汇:
def visualize_coefficients(classifier, feature_names, n_top_features=25):
coef = classifier.coef_.ravel()
positive_coefficients = np.argsort(coef)[-n_top_features:]
negative_coefficients = np.argsort(coef)[:n_top_features]
interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients])
plt.figure(figsize=(15, 5))
colors = ["red" if c < 0 else "blue" for c in coef[interesting_coefficients]]
plt.bar(np.arange(2 * n_top_features), coef[interesting_coefficients], color=colors)
feature_names = np.array(feature_names)
plt.xticks(np.arange(1, 2 * n_top_features + 1),
feature_names[interesting_coefficients], rotation=60, ha="right")
visualize_coefficients(clf, vectorizer.get_feature_names())
蓝色柱表示与垃圾短信正相关的词汇,红色柱表示与正常短信相关的词汇。
优化特征提取
通过调整min_df参数(忽略出现次数过少的词)来优化特征:
vectorizer = CountVectorizer(min_df=2) # 忽略出现次数少于2次的词
vectorizer.fit(text_train)
X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)
clf = LogisticRegression()
clf.fit(X_train, y_train)
print("优化后训练集准确率:", clf.score(X_train, y_train))
print("优化后测试集准确率:", clf.score(X_test, y_test))
进阶练习
- 尝试使用
TfidfVectorizer代替CountVectorizer,比较结果差异 - 调整
min_df和ngram_range参数,观察特征重要性的变化
总结
本文展示了使用Scikit-learn构建文本分类器的完整流程。通过词袋模型和逻辑回归,我们能够有效地识别垃圾短信。实际应用中,还可以尝试:
- 更复杂的文本预处理
- 其他分类算法如随机森林、SVM等
- 深度学习模型如LSTM、Transformer等
希望本案例能帮助读者理解文本分类的基本原理和实现方法。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.59 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
179
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205