基于Scikit-learn的短信垃圾邮件分类案例研究
2025-07-10 06:27:31作者:乔或婵
引言
在当今数字时代,垃圾短信(Spam)已成为困扰用户的一大问题。本文将介绍如何使用Python的Scikit-learn库构建一个短信垃圾邮件分类器。我们将从数据准备开始,逐步讲解特征提取、模型训练和评估的完整流程。
数据准备
首先我们需要加载并预处理短信数据集。该数据集包含两类短信:
- 正常短信(Ham)
- 垃圾短信(Spam)
import os
with open(os.path.join("datasets", "smsspam", "SMSSpamCollection")) as f:
lines = [line.strip().split("\t") for line in f.readlines()]
text = [x[1] for x in lines] # 短信内容
y = [int(x[0] == "spam") for x in lines] # 标签(0=ham, 1=spam)
查看数据分布:
import numpy as np
print('正常和垃圾短信数量:', np.bincount(y))
数据分割
将数据集划分为训练集和测试集:
from sklearn.model_selection import train_test_split
text_train, text_test, y_train, y_test = train_test_split(
text, y, random_state=42, test_size=0.25, stratify=y)
特征提取
文本数据不能直接用于机器学习算法,需要先转换为数值特征。我们使用词袋模型(Bag-of-Words):
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
vectorizer.fit(text_train)
X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)
CountVectorizer默认会:
- 将文本转换为小写
- 提取至少包含2个字母的单词
- 移除标点符号
- 构建词汇表
模型训练
使用逻辑回归作为分类器:
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train, y_train)
模型评估
评估模型在测试集上的表现:
print("测试集准确率:", clf.score(X_test, y_test))
print("训练集准确率:", clf.score(X_train, y_train))
特征重要性分析
可视化对分类影响最大的词汇:
def visualize_coefficients(classifier, feature_names, n_top_features=25):
coef = classifier.coef_.ravel()
positive_coefficients = np.argsort(coef)[-n_top_features:]
negative_coefficients = np.argsort(coef)[:n_top_features]
interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients])
plt.figure(figsize=(15, 5))
colors = ["red" if c < 0 else "blue" for c in coef[interesting_coefficients]]
plt.bar(np.arange(2 * n_top_features), coef[interesting_coefficients], color=colors)
feature_names = np.array(feature_names)
plt.xticks(np.arange(1, 2 * n_top_features + 1),
feature_names[interesting_coefficients], rotation=60, ha="right")
visualize_coefficients(clf, vectorizer.get_feature_names())
蓝色柱表示与垃圾短信正相关的词汇,红色柱表示与正常短信相关的词汇。
优化特征提取
通过调整min_df参数(忽略出现次数过少的词)来优化特征:
vectorizer = CountVectorizer(min_df=2) # 忽略出现次数少于2次的词
vectorizer.fit(text_train)
X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)
clf = LogisticRegression()
clf.fit(X_train, y_train)
print("优化后训练集准确率:", clf.score(X_train, y_train))
print("优化后测试集准确率:", clf.score(X_test, y_test))
进阶练习
- 尝试使用
TfidfVectorizer代替CountVectorizer,比较结果差异 - 调整
min_df和ngram_range参数,观察特征重要性的变化
总结
本文展示了使用Scikit-learn构建文本分类器的完整流程。通过词袋模型和逻辑回归,我们能够有效地识别垃圾短信。实际应用中,还可以尝试:
- 更复杂的文本预处理
- 其他分类算法如随机森林、SVM等
- 深度学习模型如LSTM、Transformer等
希望本案例能帮助读者理解文本分类的基本原理和实现方法。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147