MLRun v1.8.0-rc22版本发布:模型监控与数据存储能力全面升级
MLRun是一个开源的机器学习运维平台,它简化了从数据准备到模型部署的整个机器学习生命周期管理。作为一款功能强大的MLOps工具,MLRun提供了数据管道构建、特征存储、模型训练、部署和监控等全流程支持,帮助数据科学家和工程师更高效地开发和维护机器学习应用。
核心功能增强
模型监控体系架构优化
本次版本对模型监控功能进行了重大架构升级,引入了控制器流(Controller Stream)和主控工作节点(Master Worker)的实现机制。这种设计将监控逻辑集中化管理,提高了系统的可靠性和扩展性。同时移除了endpoint_type和creation_strategy等冗余配置项,将端点类型统一转换为整数表示,简化了API设计。
在监控数据存储方面,新增了对TDEngine和Kafka作为监控数据源的支持。TDEngine作为高性能时序数据库,特别适合存储模型监控产生的大量时序指标数据;而Kafka的集成则提供了高吞吐、低延迟的实时数据处理能力,使监控系统能够更及时地响应模型性能变化。
数据存储连接器扩展
数据存储层是本版本的另一大改进重点。新增了TDEngine数据存储配置支持,TDEngine作为专为物联网和工业互联网场景优化的时序数据库,能够高效处理MLRun产生的大量时序数据。同时修复了Kafka源连接器的SASL认证配置问题,增强了安全性。
对于向量数据库的支持也得到完善,特别是针对Pinecone的特殊情况进行了优化处理。在文档日志记录方面,改进了log_document()方法的默认参数,并将文档集合的元数据移至状态字段,使数据结构更加合理。
系统稳定性提升
分页机制规范化
将分页功能统一迁移至框架层实现,并增加了对页码(page)和每页大小(page_size)的最大允许范围的验证。这种集中化的分页处理不仅提高了代码复用性,还能有效防止因过大分页请求导致的性能问题。
配置管理优化
改进了环境变量的加载顺序,确保配置项能够按照正确的优先级被读取。这一改进减少了因环境变量覆盖导致的配置混乱问题,使系统行为更加可预测。
通知系统增强
邮件通知功能在本版本得到完善,增加了SMTP配置刷新接口(refresh_smtp_configuration),使系统能够在运行时动态更新邮件服务器配置。同时补充了相关文档,帮助用户更好地配置和使用邮件通知功能。
性能与可靠性改进
在Kubeflow Pipelines集成方面,实现了管道运行和实验的并发删除机制,显著提升了大规模清理操作的效率。服务路由层新增了路由存在性检查,当尝试访问不存在的路由时会明确报错,避免了潜在的混淆。
同时,服务路由还引入了每个路由器最多5000个模型的限制,防止因模型数量过多导致的内存问题。这一限制既保证了系统稳定性,又为绝大多数应用场景提供了足够的容量。
测试与问题修复
开发团队修复了多个测试用例,包括特征集推理测试、模型服务监控测试等,提高了测试套件的可靠性。调整了测试中的休眠间隔,使测试更加高效。针对滑动窗口告警测试进行了专门修复,确保告警功能在各种时间窗口下都能正确工作。
总结
MLRun v1.8.0-rc22版本在模型监控、数据存储和系统稳定性方面带来了显著改进。新引入的TDEngine和Kafka支持为监控数据提供了更多存储选择,控制器流架构提升了监控系统的可靠性,而各种性能优化和问题修复则使平台更加健壮。这些改进共同推动MLRun向更成熟的企业级MLOps平台迈进,为机器学习项目的全生命周期管理提供了更强大的支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00