首页
/ MLRun v1.8.0-rc22版本发布:模型监控与数据存储能力全面升级

MLRun v1.8.0-rc22版本发布:模型监控与数据存储能力全面升级

2025-07-01 00:05:18作者:伍霜盼Ellen

MLRun是一个开源的机器学习运维平台,它简化了从数据准备到模型部署的整个机器学习生命周期管理。作为一款功能强大的MLOps工具,MLRun提供了数据管道构建、特征存储、模型训练、部署和监控等全流程支持,帮助数据科学家和工程师更高效地开发和维护机器学习应用。

核心功能增强

模型监控体系架构优化

本次版本对模型监控功能进行了重大架构升级,引入了控制器流(Controller Stream)和主控工作节点(Master Worker)的实现机制。这种设计将监控逻辑集中化管理,提高了系统的可靠性和扩展性。同时移除了endpoint_typecreation_strategy等冗余配置项,将端点类型统一转换为整数表示,简化了API设计。

在监控数据存储方面,新增了对TDEngine和Kafka作为监控数据源的支持。TDEngine作为高性能时序数据库,特别适合存储模型监控产生的大量时序指标数据;而Kafka的集成则提供了高吞吐、低延迟的实时数据处理能力,使监控系统能够更及时地响应模型性能变化。

数据存储连接器扩展

数据存储层是本版本的另一大改进重点。新增了TDEngine数据存储配置支持,TDEngine作为专为物联网和工业互联网场景优化的时序数据库,能够高效处理MLRun产生的大量时序数据。同时修复了Kafka源连接器的SASL认证配置问题,增强了安全性。

对于向量数据库的支持也得到完善,特别是针对Pinecone的特殊情况进行了优化处理。在文档日志记录方面,改进了log_document()方法的默认参数,并将文档集合的元数据移至状态字段,使数据结构更加合理。

系统稳定性提升

分页机制规范化

将分页功能统一迁移至框架层实现,并增加了对页码(page)和每页大小(page_size)的最大允许范围的验证。这种集中化的分页处理不仅提高了代码复用性,还能有效防止因过大分页请求导致的性能问题。

配置管理优化

改进了环境变量的加载顺序,确保配置项能够按照正确的优先级被读取。这一改进减少了因环境变量覆盖导致的配置混乱问题,使系统行为更加可预测。

通知系统增强

邮件通知功能在本版本得到完善,增加了SMTP配置刷新接口(refresh_smtp_configuration),使系统能够在运行时动态更新邮件服务器配置。同时补充了相关文档,帮助用户更好地配置和使用邮件通知功能。

性能与可靠性改进

在Kubeflow Pipelines集成方面,实现了管道运行和实验的并发删除机制,显著提升了大规模清理操作的效率。服务路由层新增了路由存在性检查,当尝试访问不存在的路由时会明确报错,避免了潜在的混淆。

同时,服务路由还引入了每个路由器最多5000个模型的限制,防止因模型数量过多导致的内存问题。这一限制既保证了系统稳定性,又为绝大多数应用场景提供了足够的容量。

测试与问题修复

开发团队修复了多个测试用例,包括特征集推理测试、模型服务监控测试等,提高了测试套件的可靠性。调整了测试中的休眠间隔,使测试更加高效。针对滑动窗口告警测试进行了专门修复,确保告警功能在各种时间窗口下都能正确工作。

总结

MLRun v1.8.0-rc22版本在模型监控、数据存储和系统稳定性方面带来了显著改进。新引入的TDEngine和Kafka支持为监控数据提供了更多存储选择,控制器流架构提升了监控系统的可靠性,而各种性能优化和问题修复则使平台更加健壮。这些改进共同推动MLRun向更成熟的企业级MLOps平台迈进,为机器学习项目的全生命周期管理提供了更强大的支持。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133