MLRun v1.8.0-rc22版本发布:模型监控与数据存储能力全面升级
MLRun是一个开源的机器学习运维平台,它简化了从数据准备到模型部署的整个机器学习生命周期管理。作为一款功能强大的MLOps工具,MLRun提供了数据管道构建、特征存储、模型训练、部署和监控等全流程支持,帮助数据科学家和工程师更高效地开发和维护机器学习应用。
核心功能增强
模型监控体系架构优化
本次版本对模型监控功能进行了重大架构升级,引入了控制器流(Controller Stream)和主控工作节点(Master Worker)的实现机制。这种设计将监控逻辑集中化管理,提高了系统的可靠性和扩展性。同时移除了endpoint_type和creation_strategy等冗余配置项,将端点类型统一转换为整数表示,简化了API设计。
在监控数据存储方面,新增了对TDEngine和Kafka作为监控数据源的支持。TDEngine作为高性能时序数据库,特别适合存储模型监控产生的大量时序指标数据;而Kafka的集成则提供了高吞吐、低延迟的实时数据处理能力,使监控系统能够更及时地响应模型性能变化。
数据存储连接器扩展
数据存储层是本版本的另一大改进重点。新增了TDEngine数据存储配置支持,TDEngine作为专为物联网和工业互联网场景优化的时序数据库,能够高效处理MLRun产生的大量时序数据。同时修复了Kafka源连接器的SASL认证配置问题,增强了安全性。
对于向量数据库的支持也得到完善,特别是针对Pinecone的特殊情况进行了优化处理。在文档日志记录方面,改进了log_document()方法的默认参数,并将文档集合的元数据移至状态字段,使数据结构更加合理。
系统稳定性提升
分页机制规范化
将分页功能统一迁移至框架层实现,并增加了对页码(page)和每页大小(page_size)的最大允许范围的验证。这种集中化的分页处理不仅提高了代码复用性,还能有效防止因过大分页请求导致的性能问题。
配置管理优化
改进了环境变量的加载顺序,确保配置项能够按照正确的优先级被读取。这一改进减少了因环境变量覆盖导致的配置混乱问题,使系统行为更加可预测。
通知系统增强
邮件通知功能在本版本得到完善,增加了SMTP配置刷新接口(refresh_smtp_configuration),使系统能够在运行时动态更新邮件服务器配置。同时补充了相关文档,帮助用户更好地配置和使用邮件通知功能。
性能与可靠性改进
在Kubeflow Pipelines集成方面,实现了管道运行和实验的并发删除机制,显著提升了大规模清理操作的效率。服务路由层新增了路由存在性检查,当尝试访问不存在的路由时会明确报错,避免了潜在的混淆。
同时,服务路由还引入了每个路由器最多5000个模型的限制,防止因模型数量过多导致的内存问题。这一限制既保证了系统稳定性,又为绝大多数应用场景提供了足够的容量。
测试与问题修复
开发团队修复了多个测试用例,包括特征集推理测试、模型服务监控测试等,提高了测试套件的可靠性。调整了测试中的休眠间隔,使测试更加高效。针对滑动窗口告警测试进行了专门修复,确保告警功能在各种时间窗口下都能正确工作。
总结
MLRun v1.8.0-rc22版本在模型监控、数据存储和系统稳定性方面带来了显著改进。新引入的TDEngine和Kafka支持为监控数据提供了更多存储选择,控制器流架构提升了监控系统的可靠性,而各种性能优化和问题修复则使平台更加健壮。这些改进共同推动MLRun向更成熟的企业级MLOps平台迈进,为机器学习项目的全生命周期管理提供了更强大的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00