MLRun v1.8.0-rc25版本发布:模型监控与向量数据库能力升级
MLRun是一个开源的机器学习平台,旨在简化机器学习工作流程的构建、部署和管理。作为数据科学家和机器学习工程师的强大工具,MLRun提供了从数据准备到模型部署的全生命周期管理能力。
本次发布的v1.8.0-rc25版本带来了多项重要改进,特别是在模型监控和向量数据库功能方面有显著增强。作为候选发布版本,它已经具备了生产环境使用的基本条件,但仍在进行最后的测试和优化。
核心功能增强
在模型监控方面,本次更新解决了多个关键问题。Kafka流处理的分片函数(sharding_func)得到了修正,确保了大规模模型监控场景下的数据处理稳定性。同时,批量漂移测试(batch_drift)和应用评估系统测试也得到了修复,提升了模型监控系统的可靠性。
向量数据库功能是本版本的另一个重点改进领域。开发团队优化了与MongoDB的集成,现在使用原生的delete操作替代了之前的Langchain实现,提高了文档删除操作的效率。此外,文档加载器规范(DocumentLoaderSpec)中的下载对象(download_object)现在会被持久化存储,避免了重复下载的开销。对于V3IO存储,默认配置增加了"document"前缀,使命名更加规范。
安全性与兼容性提升
安全方面,Golang组件中的多个问题得到了修复,进一步提升了系统的安全性。Python 3.11现在也被纳入持续集成(CI)测试范围,确保MLRun能够兼容最新的Python版本。
项目密钥管理功能得到了改进,现在支持不经过大写转换或添加前缀直接挂载项目密钥,为开发者提供了更大的灵活性。这一变化特别适合需要保持密钥原始格式的特殊场景。
告警系统优化
告警功能在本版本中获得了两项重要改进。首先是新增了获取单个告警激活状态的API接口,使得用户可以更精确地查询特定告警的状态。其次,系统现在能够支持未来可能添加的schema字段,为后续功能扩展奠定了基础。对于旧版本客户端,更新字段(updated field)会被自动从响应中排除,确保了向后兼容性。
数据存储与缓存改进
数据存储层现在能够更好地处理MLClientCtx场景下的artifact缓存未命中情况,提高了系统的健壮性。这一改进减少了因缓存问题导致的异常情况,使数据处理流程更加稳定。
开发者体验优化
开发者工具方面,UI链接生成功能得到了修复,确保了用户界面中的链接能够正确指向目标资源。Alembic修订版本获取过程增加了调试打印信息,方便开发者诊断数据库迁移问题。
总体而言,MLRun v1.8.0-rc25版本在稳定性、安全性和功能性方面都有显著提升,特别是对模型监控和向量数据库这两个关键组件的改进,将为机器学习工作流提供更强大的支持。开发团队建议用户评估这一版本,为即将到来的正式发布做好准备。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C027
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00