使用async-profiler进行Off-CPU性能分析的实践指南
背景介绍
在现代分布式系统中,性能分析是诊断系统瓶颈的重要手段。传统的CPU profiling工具主要关注线程在CPU上执行的时间,但对于像Apache Cassandra这样的分布式数据库系统,线程经常处于等待I/O、锁或其他资源的Off-CPU状态。这种情况下,常规的CPU profiling无法全面反映系统性能问题。
Off-CPU分析的概念
Off-CPU分析是指追踪线程不在CPU上运行的时间段,这些时间段通常包括:
- 等待I/O操作完成
- 等待锁或同步原语
- 进程调度导致的上下文切换
- 其他系统调用阻塞
与传统的CPU profiling不同,Off-CPU分析能帮助开发者发现那些不消耗CPU但严重影响系统响应时间的潜在问题。
async-profiler的Off-CPU分析能力
async-profiler作为一款强大的Java性能分析工具,提供了多种方式进行Off-CPU分析:
-
Wall-clock模式: 使用
-e wall
参数可以采集所有线程状态,包括运行中和休眠中的线程。通过JFR输出格式,可以区分THREAD_RUNNABLE
和THREAD_SLEEPING
状态,然后使用jfr2flame工具生成特定状态的火焰图。 -
Kprobe模式: 对于需要更精细分析的情况,可以使用kprobe跟踪特定内核函数,如:
sudo asprof -e kprobe:schedule -i 2 --cstack dwarf -f profile.html <pid>
这种方式能捕获线程调度相关的详细调用栈。
实际应用中的挑战与解决方案
在实践过程中,可能会遇到以下问题:
-
权限问题: 在Linux 5.8及以上内核中,进行性能监控需要
CAP_PERFMON
能力。解决方案是:setcap "cap_perfmon,cap_sys_ptrace,cap_syslog=ep" /path/to/java
然后重启Java进程。
-
火焰图解读:
- 对于wall-clock模式产生的火焰图,建议先关注那些占用大量wall-time但CPU消耗低的调用路径
- 结合线程状态筛选功能,可以单独分析休眠状态的调用栈
-
内核栈与用户栈关联: 使用
--cstack dwarf
参数可以获取完整的调用栈信息,包括内核空间和用户空间的调用关系。
最佳实践建议
- 对于初步分析,建议先使用wall-clock模式快速定位问题区域
- 对于深入分析特定阻塞场景,使用kprobe模式针对特定系统调用进行跟踪
- 在高安全要求环境中,考虑使用
--all-user
或--fdtransfer
选项 - 结合其他工具如perf进行交叉验证
总结
async-profiler提供了强大的Off-CPU分析能力,通过合理配置可以深入分析Java应用在各种等待状态下的性能表现。掌握这些技术可以帮助开发者发现传统CPU profiling难以察觉的性能瓶颈,特别是在I/O密集型或高并发场景下的系统优化中发挥重要作用。
对于像Apache Cassandra这样的分布式数据库系统,Off-CPU分析尤为重要,能够帮助开发者发现网络I/O、磁盘I/O以及协调等待等关键路径上的性能问题。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









