Modelscope/SWIFT训练中reward函数样本数量不固定的问题分析
问题现象
在使用Modelscope/SWIFT框架进行强化学习训练时,用户报告了一个有趣的现象:在训练初期,reward函数接收到的样本数量与预期一致(如num_generation=8,per_device_batch_size=8,8卡训练时len(completions)=8),但随着训练进行,reward函数接收到的样本数量会突然变为1。
原因分析
经过技术分析,这个问题主要与SWIFT框架的评估机制有关:
-
默认评估批大小设置:SWIFT框架默认将per_device_eval_batch_size设置为1,这意味着在评估阶段,每个设备每次只处理1个样本。
-
数据集分割影响:当设置了split_dataset_ratio参数时,框架会在训练过程中自动划分评估集。当评估阶段触发时,reward函数会以评估批大小(默认为1)接收样本,而不是训练时的批大小。
-
训练/评估模式切换:深度学习框架通常会在训练过程中穿插评估阶段,以监控模型性能。这种模式切换会导致数据处理管道的批大小发生变化。
解决方案
用户发现通过设置--split_dataset_ratio 0.0可以解决这个问题,这是因为:
-
将split_dataset_ratio设为0表示不划分评估集,整个数据集都用于训练。
-
这样框架就不会进入评估模式,reward函数始终以训练批大小接收样本。
-
如果确实需要评估集,可以调整per_device_eval_batch_size参数,使其与训练批大小一致。
最佳实践建议
-
明确训练目标:如果目标是纯训练而不需要中间评估,建议将split_dataset_ratio设为0。
-
批大小一致性:如需保留评估功能,应确保per_device_eval_batch_size与训练批大小一致,避免数据处理逻辑不一致。
-
版本兼容性检查:不同版本的SWIFT框架可能有不同的默认参数设置,升级时应注意检查相关参数的默认值。
-
日志监控:建议在reward函数中添加日志,记录每次调用的样本数量,便于及时发现和诊断类似问题。
技术背景
在强化学习训练中,reward函数的调用频率和样本数量直接影响训练效率和稳定性。现代深度学习框架通常采用异步数据加载和多阶段处理管道,理解这些机制有助于更好地配置训练参数。SWIFT框架作为ModelScope生态系统的一部分,在保持灵活性的同时,也提供了一些合理的默认设置,开发者需要根据具体需求进行调整。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00