Modelscope/SWIFT训练中reward函数样本数量不固定的问题分析
问题现象
在使用Modelscope/SWIFT框架进行强化学习训练时,用户报告了一个有趣的现象:在训练初期,reward函数接收到的样本数量与预期一致(如num_generation=8,per_device_batch_size=8,8卡训练时len(completions)=8),但随着训练进行,reward函数接收到的样本数量会突然变为1。
原因分析
经过技术分析,这个问题主要与SWIFT框架的评估机制有关:
-
默认评估批大小设置:SWIFT框架默认将per_device_eval_batch_size设置为1,这意味着在评估阶段,每个设备每次只处理1个样本。
-
数据集分割影响:当设置了split_dataset_ratio参数时,框架会在训练过程中自动划分评估集。当评估阶段触发时,reward函数会以评估批大小(默认为1)接收样本,而不是训练时的批大小。
-
训练/评估模式切换:深度学习框架通常会在训练过程中穿插评估阶段,以监控模型性能。这种模式切换会导致数据处理管道的批大小发生变化。
解决方案
用户发现通过设置--split_dataset_ratio 0.0可以解决这个问题,这是因为:
-
将split_dataset_ratio设为0表示不划分评估集,整个数据集都用于训练。
-
这样框架就不会进入评估模式,reward函数始终以训练批大小接收样本。
-
如果确实需要评估集,可以调整per_device_eval_batch_size参数,使其与训练批大小一致。
最佳实践建议
-
明确训练目标:如果目标是纯训练而不需要中间评估,建议将split_dataset_ratio设为0。
-
批大小一致性:如需保留评估功能,应确保per_device_eval_batch_size与训练批大小一致,避免数据处理逻辑不一致。
-
版本兼容性检查:不同版本的SWIFT框架可能有不同的默认参数设置,升级时应注意检查相关参数的默认值。
-
日志监控:建议在reward函数中添加日志,记录每次调用的样本数量,便于及时发现和诊断类似问题。
技术背景
在强化学习训练中,reward函数的调用频率和样本数量直接影响训练效率和稳定性。现代深度学习框架通常采用异步数据加载和多阶段处理管道,理解这些机制有助于更好地配置训练参数。SWIFT框架作为ModelScope生态系统的一部分,在保持灵活性的同时,也提供了一些合理的默认设置,开发者需要根据具体需求进行调整。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00