Apache DataFusion 中 Duration 类型聚合性能优化实践
2025-05-31 11:41:41作者:房伟宁
背景介绍
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在数据分析领域,处理时间间隔(Duration)类型的聚合操作是一个常见需求,特别是在分析系统响应时间、处理延迟等场景下。
问题发现
在 DataFusion 项目中,开发团队注意到现有的 AVG
聚合函数在处理 Duration 类型数据时存在性能瓶颈。具体表现为:
- 缺乏针对 Duration 类型的专门优化实现
- 现有基准测试中没有覆盖 Duration 类型的聚合场景
- 当需要对时间差进行平均值计算时,性能表现不理想
技术解决方案
团队提出了两个主要的技术改进方向:
1. 实现专门的 GroupsAccumulator 优化
通过为 Duration 类型实现专门的 GroupsAccumulator
,可以显著提高 AVG(duration)
操作的性能。这种优化利用了 Rust 的类型系统和 DataFusion 的执行框架,为特定数据类型提供定制化的聚合计算路径。
测试数据显示,优化后的实现在相同查询下性能提升了约 35%:
- 优化前:约 0.478 秒
- 优化后:约 0.306 秒
2. 添加基准测试用例
为了验证优化效果并防止性能回退,团队设计了两类基准测试查询:
简单分组查询
SELECT
"OS",
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ResponseStartTiming")) as avg_response_time,
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ConnectTiming")) as avg_latency
FROM 'hits_partitioned'
GROUP BY "OS"
ORDER BY avg_latency DESC
这类查询产生约 91 个分组,适合测试基础聚合性能。
复杂分组查询
SELECT
"RegionID",
"UserAgent",
"OS",
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_start,
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_end
FROM 'hits_partitioned'
GROUP BY "RegionID", "UserAgent", "OS"
ORDER BY a_start, a_end DESC
这类查询会产生更多分组(约 138,826 个),能够更好地测试系统在高基数分组下的聚合性能。
业务场景应用
这些优化特别适用于以下业务分析场景:
- 系统性能分析:计算不同操作系统(OS)的平均响应时间和延迟
- 用户行为分析:分析不同地区、用户代理组合的时间模式
- 服务质量监控:识别响应时间异常的区域-设备组合
例如,通过分析不同 OS 的响应时间差异,可以识别出性能问题:
+-----+-------------------------------------------+------------------------------------------+
| OS | avg_response_time | avg_latency |
+-----+-------------------------------------------+------------------------------------------+
| 103 | 0 days 0 hours 13 mins 47.509466437 secs | 0 days 0 hours 13 mins 47.509466437 secs |
| 74 | 0 days 0 hours 12 mins 51.287431013 secs | 0 days 0 hours 13 mins 47.184892702 secs |
| 49 | 0 days 0 hours 13 mins 9.107811258 secs | 0 days 0 hours 13 mins 42.811185779 secs |
...
技术实现要点
- Duration 类型处理:通过时间戳相减得到 Duration 类型
- 聚合优化:为 Duration 实现专门的累加器,避免通用实现的性能开销
- 基准测试设计:覆盖不同分组基数场景,确保优化效果可测量
总结
DataFusion 通过对 Duration 类型聚合的专门优化,显著提升了时间相关分析查询的性能。这一改进不仅体现在技术指标上,更能为实际业务分析提供更高效的支持。通过精心设计的基准测试,团队确保了优化效果的可靠性和可持续性。
这种针对特定数据类型的优化思路,也为 DataFusion 处理其他复杂数据类型提供了可借鉴的经验。随着越来越多的企业需要处理时间序列数据,这类优化将发挥越来越重要的作用。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8