Apache DataFusion 中 Duration 类型聚合性能优化实践
2025-05-31 16:04:18作者:房伟宁
背景介绍
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在数据分析领域,处理时间间隔(Duration)类型的聚合操作是一个常见需求,特别是在分析系统响应时间、处理延迟等场景下。
问题发现
在 DataFusion 项目中,开发团队注意到现有的 AVG 聚合函数在处理 Duration 类型数据时存在性能瓶颈。具体表现为:
- 缺乏针对 Duration 类型的专门优化实现
- 现有基准测试中没有覆盖 Duration 类型的聚合场景
- 当需要对时间差进行平均值计算时,性能表现不理想
技术解决方案
团队提出了两个主要的技术改进方向:
1. 实现专门的 GroupsAccumulator 优化
通过为 Duration 类型实现专门的 GroupsAccumulator,可以显著提高 AVG(duration) 操作的性能。这种优化利用了 Rust 的类型系统和 DataFusion 的执行框架,为特定数据类型提供定制化的聚合计算路径。
测试数据显示,优化后的实现在相同查询下性能提升了约 35%:
- 优化前:约 0.478 秒
- 优化后:约 0.306 秒
2. 添加基准测试用例
为了验证优化效果并防止性能回退,团队设计了两类基准测试查询:
简单分组查询
SELECT
"OS",
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ResponseStartTiming")) as avg_response_time,
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ConnectTiming")) as avg_latency
FROM 'hits_partitioned'
GROUP BY "OS"
ORDER BY avg_latency DESC
这类查询产生约 91 个分组,适合测试基础聚合性能。
复杂分组查询
SELECT
"RegionID",
"UserAgent",
"OS",
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_start,
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_end
FROM 'hits_partitioned'
GROUP BY "RegionID", "UserAgent", "OS"
ORDER BY a_start, a_end DESC
这类查询会产生更多分组(约 138,826 个),能够更好地测试系统在高基数分组下的聚合性能。
业务场景应用
这些优化特别适用于以下业务分析场景:
- 系统性能分析:计算不同操作系统(OS)的平均响应时间和延迟
- 用户行为分析:分析不同地区、用户代理组合的时间模式
- 服务质量监控:识别响应时间异常的区域-设备组合
例如,通过分析不同 OS 的响应时间差异,可以识别出性能问题:
+-----+-------------------------------------------+------------------------------------------+
| OS | avg_response_time | avg_latency |
+-----+-------------------------------------------+------------------------------------------+
| 103 | 0 days 0 hours 13 mins 47.509466437 secs | 0 days 0 hours 13 mins 47.509466437 secs |
| 74 | 0 days 0 hours 12 mins 51.287431013 secs | 0 days 0 hours 13 mins 47.184892702 secs |
| 49 | 0 days 0 hours 13 mins 9.107811258 secs | 0 days 0 hours 13 mins 42.811185779 secs |
...
技术实现要点
- Duration 类型处理:通过时间戳相减得到 Duration 类型
- 聚合优化:为 Duration 实现专门的累加器,避免通用实现的性能开销
- 基准测试设计:覆盖不同分组基数场景,确保优化效果可测量
总结
DataFusion 通过对 Duration 类型聚合的专门优化,显著提升了时间相关分析查询的性能。这一改进不仅体现在技术指标上,更能为实际业务分析提供更高效的支持。通过精心设计的基准测试,团队确保了优化效果的可靠性和可持续性。
这种针对特定数据类型的优化思路,也为 DataFusion 处理其他复杂数据类型提供了可借鉴的经验。随着越来越多的企业需要处理时间序列数据,这类优化将发挥越来越重要的作用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39