Apache Arrow DataFusion 中 Duration 类型聚合性能优化
背景介绍
Apache Arrow DataFusion 是一个高性能的查询引擎,它支持多种数据类型的聚合操作。在最新版本中,社区已经实现了对 Duration 类型(时间间隔类型)的基本 min/max 聚合功能支持。然而,当前的实现仅使用了较慢的 Accumulator 接口,而没有利用更高效的 GroupsAccumulator 接口。
技术现状
目前 DataFusion 中的 min/max 聚合操作针对 Duration 类型使用的是传统的 Accumulator 接口。这种实现方式虽然功能完整,但在处理大量分组数据时性能不够理想。GroupsAccumulator 接口是专门为分组聚合优化的高性能接口,能够显著提升大数据量下的聚合性能。
优化方案
要实现 Duration 类型的 GroupsAccumulator 优化,需要进行以下几个关键步骤:
-
类型支持扩展:在 min/max 聚合函数支持的类型列表中添加 Duration 类型。目前系统已经支持多种基本类型的 GroupsAccumulator 实现,需要将 Duration 类型加入这个支持列表。
-
Accumulator 实例化:在聚合函数的核心逻辑中,为 Duration 类型创建对应的 GroupsAccumulator 实例。这需要根据 Duration 的特性实现特定的比较和聚合逻辑。
-
测试验证:扩展现有的测试用例,增加针对 Duration 类型的 min/max 聚合测试,特别是多分组情况下的性能测试。
实现细节
在 SQL 中,Duration 类型可以通过时间戳相减得到。例如:
SELECT now() - ts, arrow_typeof(now() - ts) as arrow_type FROM foo;
这将产生一个 Duration(Nanosecond) 类型的结果。
在实现 GroupsAccumulator 时,需要考虑 Duration 类型的以下特性:
- Duration 可以有不同的时间单位(纳秒、微秒、毫秒、秒)
- 需要正确处理不同单位之间的比较和转换
- 需要考虑边界条件和特殊值处理
性能影响
使用 GroupsAccumulator 接口相比传统 Accumulator 接口可以带来显著的性能提升,特别是在以下场景:
- 数据量大的情况下
- 分组数量多的情况下
- 需要频繁执行聚合操作的场景
这种优化对于时间序列数据分析尤为重要,因为这类应用经常需要对时间间隔进行聚合统计。
总结
通过对 Duration 类型实现 GroupsAccumulator 接口,可以显著提升 DataFusion 在处理时间间隔聚合操作时的性能。这一优化不仅完善了系统功能,也为时间序列数据分析等场景提供了更好的性能支持。对于开发者而言,理解这种性能优化的原理和方法,也有助于在其他类型的聚合操作中应用类似的优化策略。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









