Apache Arrow DataFusion 中 Duration 类型聚合性能优化
背景介绍
Apache Arrow DataFusion 是一个高性能的查询引擎,它支持多种数据类型的聚合操作。在最新版本中,社区已经实现了对 Duration 类型(时间间隔类型)的基本 min/max 聚合功能支持。然而,当前的实现仅使用了较慢的 Accumulator 接口,而没有利用更高效的 GroupsAccumulator 接口。
技术现状
目前 DataFusion 中的 min/max 聚合操作针对 Duration 类型使用的是传统的 Accumulator 接口。这种实现方式虽然功能完整,但在处理大量分组数据时性能不够理想。GroupsAccumulator 接口是专门为分组聚合优化的高性能接口,能够显著提升大数据量下的聚合性能。
优化方案
要实现 Duration 类型的 GroupsAccumulator 优化,需要进行以下几个关键步骤:
-
类型支持扩展:在 min/max 聚合函数支持的类型列表中添加 Duration 类型。目前系统已经支持多种基本类型的 GroupsAccumulator 实现,需要将 Duration 类型加入这个支持列表。
-
Accumulator 实例化:在聚合函数的核心逻辑中,为 Duration 类型创建对应的 GroupsAccumulator 实例。这需要根据 Duration 的特性实现特定的比较和聚合逻辑。
-
测试验证:扩展现有的测试用例,增加针对 Duration 类型的 min/max 聚合测试,特别是多分组情况下的性能测试。
实现细节
在 SQL 中,Duration 类型可以通过时间戳相减得到。例如:
SELECT now() - ts, arrow_typeof(now() - ts) as arrow_type FROM foo;
这将产生一个 Duration(Nanosecond) 类型的结果。
在实现 GroupsAccumulator 时,需要考虑 Duration 类型的以下特性:
- Duration 可以有不同的时间单位(纳秒、微秒、毫秒、秒)
- 需要正确处理不同单位之间的比较和转换
- 需要考虑边界条件和特殊值处理
性能影响
使用 GroupsAccumulator 接口相比传统 Accumulator 接口可以带来显著的性能提升,特别是在以下场景:
- 数据量大的情况下
- 分组数量多的情况下
- 需要频繁执行聚合操作的场景
这种优化对于时间序列数据分析尤为重要,因为这类应用经常需要对时间间隔进行聚合统计。
总结
通过对 Duration 类型实现 GroupsAccumulator 接口,可以显著提升 DataFusion 在处理时间间隔聚合操作时的性能。这一优化不仅完善了系统功能,也为时间序列数据分析等场景提供了更好的性能支持。对于开发者而言,理解这种性能优化的原理和方法,也有助于在其他类型的聚合操作中应用类似的优化策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00