Apache Arrow DataFusion 中 Duration 类型聚合性能优化
背景介绍
Apache Arrow DataFusion 是一个高性能的查询引擎,它支持多种数据类型的聚合操作。在最新版本中,社区已经实现了对 Duration 类型(时间间隔类型)的基本 min/max 聚合功能支持。然而,当前的实现仅使用了较慢的 Accumulator 接口,而没有利用更高效的 GroupsAccumulator 接口。
技术现状
目前 DataFusion 中的 min/max 聚合操作针对 Duration 类型使用的是传统的 Accumulator 接口。这种实现方式虽然功能完整,但在处理大量分组数据时性能不够理想。GroupsAccumulator 接口是专门为分组聚合优化的高性能接口,能够显著提升大数据量下的聚合性能。
优化方案
要实现 Duration 类型的 GroupsAccumulator 优化,需要进行以下几个关键步骤:
-
类型支持扩展:在 min/max 聚合函数支持的类型列表中添加 Duration 类型。目前系统已经支持多种基本类型的 GroupsAccumulator 实现,需要将 Duration 类型加入这个支持列表。
-
Accumulator 实例化:在聚合函数的核心逻辑中,为 Duration 类型创建对应的 GroupsAccumulator 实例。这需要根据 Duration 的特性实现特定的比较和聚合逻辑。
-
测试验证:扩展现有的测试用例,增加针对 Duration 类型的 min/max 聚合测试,特别是多分组情况下的性能测试。
实现细节
在 SQL 中,Duration 类型可以通过时间戳相减得到。例如:
SELECT now() - ts, arrow_typeof(now() - ts) as arrow_type FROM foo;
这将产生一个 Duration(Nanosecond) 类型的结果。
在实现 GroupsAccumulator 时,需要考虑 Duration 类型的以下特性:
- Duration 可以有不同的时间单位(纳秒、微秒、毫秒、秒)
- 需要正确处理不同单位之间的比较和转换
- 需要考虑边界条件和特殊值处理
性能影响
使用 GroupsAccumulator 接口相比传统 Accumulator 接口可以带来显著的性能提升,特别是在以下场景:
- 数据量大的情况下
- 分组数量多的情况下
- 需要频繁执行聚合操作的场景
这种优化对于时间序列数据分析尤为重要,因为这类应用经常需要对时间间隔进行聚合统计。
总结
通过对 Duration 类型实现 GroupsAccumulator 接口,可以显著提升 DataFusion 在处理时间间隔聚合操作时的性能。这一优化不仅完善了系统功能,也为时间序列数据分析等场景提供了更好的性能支持。对于开发者而言,理解这种性能优化的原理和方法,也有助于在其他类型的聚合操作中应用类似的优化策略。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00