首页
/ 探索图神经网络的未来:Graph-Mamba

探索图神经网络的未来:Graph-Mamba

2024-06-07 10:04:15作者:田桥桑Industrious

在大规模图数据处理中,注意力机制(Attention Mechanisms)已成为捕获节点之间长期依赖关系的重要工具。然而,随着图形规模的增长,其计算复杂度呈平方级增长,导致效率瓶颈。为了解决这一问题,研究者们已经尝试通过随机或基于启发式的子图采样来稀疏注意力,但这往往无法充分利用数据上下文进行推理。State Space Models(SSMs),如Mamba,因其在序列数据中建模长期依赖的有效性和效率而备受关注。但是,如何将SSMs应用于非顺序的图数据仍是一项挑战。

Graph-Mamba,这个名字来源于"Mamba"和"graph"的结合,是首个尝试将Mamba块与输入依赖的节点选择机制融合,以增强图网络中的长距离上下文建模的系统。它通过设计针对图的节点优先级和排列策略,提升了对语境感知推理的能力,从而在预测性能上取得了显著提升。在十项基准数据集上的广泛实验表明,Graph-Mamba在长范围图预测任务上超越了现有的最佳方法,并在FLOPs和GPU内存消耗方面实现了显著的成本降低。

Main Results (主结果示意图)

项目技术分析

Graph-Mamba的核心在于它的创新性融合了Mamba模型和自适应的节点选择机制。它不仅仅是一个简单的效率优化,而是深度理解并利用图数据结构的关键特性,通过定制化的Gated GCN层和Mamba块实现对节点依赖性的高效建模。这种方法不仅减少了计算成本,还能够更好地保留数据的语义信息,使得在大型图中的预测更为精准。

项目及技术应用场景

Graph-Mamba适用于任何需要处理大量节点和边的图数据场景,如生物信息学中的蛋白质功能预测、社交网络分析、推荐系统和网络路由优化等。特别是在处理大规模复杂网络时,Graph-Mamba能提供更快速、更准确的结果,同时有效地节省计算资源。

项目特点

  1. 创新性融合: 结合了Mamba的序列建模优势与图网络的特定结构,创造出一种新型的图态空间模型。
  2. 高效性能: 在多项基准测试中表现出优越的预测性能,且资源消耗大幅降低。
  3. 灵活配置: 提供多种配置选项,支持自定义节点优先级和排列策略,适应不同的图数据和任务需求。
  4. 易于使用: 提供清晰的安装和运行指南,集成现有项目如GraphGPS和Exphormer的配置文件,便于用户快速上手。

为了开始您的Graph-Mamba之旅,请按照提供的Python环境设置说明创建Conda虚拟环境,并通过main.py脚本启动实验。该项目的详细文档和进一步的配置选项可以在GitHub仓库中找到。

引用我们的工作时,请参考以下引用格式:

@article{Graph-Mamba,
Author = {Chloe Wang and Oleksii Tsepa and Jun Ma and Bo Wang},
Title = {Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces},
Year = {2024},
journal={arXiv preprint arXiv:2402.00789},
}

Graph-Mamba开启了一种全新的图神经网络建模方式,为大规模图数据处理带来了革命性的进步。让我们一起探索这个潜力无限的技术,共创未来!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511