Modelscope/SWIFT项目中最佳模型检查点保存问题解析
2025-05-31 13:21:04作者:翟萌耘Ralph
问题背景
在使用Modelscope/SWIFT框架进行强化学习微调(RLHF)训练时,用户遇到了一个典型的最佳模型检查点(checkpoint)未被正确保存的问题。具体表现为:训练日志显示在1050步时模型达到了最佳性能,但在输出目录中却找不到对应的模型文件。
技术分析
这个问题本质上是由训练参数配置不当引起的,具体涉及两个关键参数的设置:
eval_steps=50:表示每50个训练步骤进行一次模型评估save_steps=200:表示每200个训练步骤保存一次模型检查点
这两个参数的不匹配导致了评估和保存的步调不一致。当模型在1050步达到最佳性能时,由于1050不是200的整数倍(200×5=1000,200×6=1200),系统不会自动保存该检查点。
解决方案
针对这个问题,有以下几种可行的解决方案:
- 
同步评估和保存步数:将
eval_steps和save_steps设置为相同的值,或者设置为可以整除的关系。例如都设置为100,这样每100步既评估又保存。 - 
使用回调机制:在高级配置中,可以实现自定义回调函数,在每次评估后如果发现性能提升就立即保存模型,不受
save_steps参数的限制。 - 
调整保存策略:可以设置更频繁的保存间隔,同时配合
save_total_limit参数控制保存的检查点总数,避免存储空间被占满。 
最佳实践建议
在进行大规模模型训练时,特别是RLHF这类计算密集型任务时,建议遵循以下原则:
- 评估频率应适当高于保存频率,这样可以更精确地捕捉模型性能变化
 - 保存间隔不宜过大,避免丢失重要中间结果
 - 结合使用模型性能监控和自动保存最佳检查点功能
 - 对于长时间训练任务,考虑设置检查点回滚机制
 
总结
模型训练过程中的检查点管理是深度学习工作流中的重要环节。通过合理配置评估和保存参数,可以确保在训练过程中不错过任何重要的模型状态,同时也不会产生过多的冗余检查点占用存储空间。在Modelscope/SWIFT框架中,理解并正确使用eval_steps和save_steps等参数对于高效训练至关重要。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446