Modelscope/SWIFT项目中最佳模型检查点保存问题解析
2025-05-31 20:32:45作者:翟萌耘Ralph
问题背景
在使用Modelscope/SWIFT框架进行强化学习微调(RLHF)训练时,用户遇到了一个典型的最佳模型检查点(checkpoint)未被正确保存的问题。具体表现为:训练日志显示在1050步时模型达到了最佳性能,但在输出目录中却找不到对应的模型文件。
技术分析
这个问题本质上是由训练参数配置不当引起的,具体涉及两个关键参数的设置:
eval_steps=50:表示每50个训练步骤进行一次模型评估save_steps=200:表示每200个训练步骤保存一次模型检查点
这两个参数的不匹配导致了评估和保存的步调不一致。当模型在1050步达到最佳性能时,由于1050不是200的整数倍(200×5=1000,200×6=1200),系统不会自动保存该检查点。
解决方案
针对这个问题,有以下几种可行的解决方案:
-
同步评估和保存步数:将
eval_steps和save_steps设置为相同的值,或者设置为可以整除的关系。例如都设置为100,这样每100步既评估又保存。 -
使用回调机制:在高级配置中,可以实现自定义回调函数,在每次评估后如果发现性能提升就立即保存模型,不受
save_steps参数的限制。 -
调整保存策略:可以设置更频繁的保存间隔,同时配合
save_total_limit参数控制保存的检查点总数,避免存储空间被占满。
最佳实践建议
在进行大规模模型训练时,特别是RLHF这类计算密集型任务时,建议遵循以下原则:
- 评估频率应适当高于保存频率,这样可以更精确地捕捉模型性能变化
- 保存间隔不宜过大,避免丢失重要中间结果
- 结合使用模型性能监控和自动保存最佳检查点功能
- 对于长时间训练任务,考虑设置检查点回滚机制
总结
模型训练过程中的检查点管理是深度学习工作流中的重要环节。通过合理配置评估和保存参数,可以确保在训练过程中不错过任何重要的模型状态,同时也不会产生过多的冗余检查点占用存储空间。在Modelscope/SWIFT框架中,理解并正确使用eval_steps和save_steps等参数对于高效训练至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120