Modelscope/SWIFT项目中最佳模型检查点保存问题解析
2025-05-31 15:31:58作者:翟萌耘Ralph
问题背景
在使用Modelscope/SWIFT框架进行强化学习微调(RLHF)训练时,用户遇到了一个典型的最佳模型检查点(checkpoint)未被正确保存的问题。具体表现为:训练日志显示在1050步时模型达到了最佳性能,但在输出目录中却找不到对应的模型文件。
技术分析
这个问题本质上是由训练参数配置不当引起的,具体涉及两个关键参数的设置:
eval_steps=50:表示每50个训练步骤进行一次模型评估save_steps=200:表示每200个训练步骤保存一次模型检查点
这两个参数的不匹配导致了评估和保存的步调不一致。当模型在1050步达到最佳性能时,由于1050不是200的整数倍(200×5=1000,200×6=1200),系统不会自动保存该检查点。
解决方案
针对这个问题,有以下几种可行的解决方案:
-
同步评估和保存步数:将
eval_steps和save_steps设置为相同的值,或者设置为可以整除的关系。例如都设置为100,这样每100步既评估又保存。 -
使用回调机制:在高级配置中,可以实现自定义回调函数,在每次评估后如果发现性能提升就立即保存模型,不受
save_steps参数的限制。 -
调整保存策略:可以设置更频繁的保存间隔,同时配合
save_total_limit参数控制保存的检查点总数,避免存储空间被占满。
最佳实践建议
在进行大规模模型训练时,特别是RLHF这类计算密集型任务时,建议遵循以下原则:
- 评估频率应适当高于保存频率,这样可以更精确地捕捉模型性能变化
- 保存间隔不宜过大,避免丢失重要中间结果
- 结合使用模型性能监控和自动保存最佳检查点功能
- 对于长时间训练任务,考虑设置检查点回滚机制
总结
模型训练过程中的检查点管理是深度学习工作流中的重要环节。通过合理配置评估和保存参数,可以确保在训练过程中不错过任何重要的模型状态,同时也不会产生过多的冗余检查点占用存储空间。在Modelscope/SWIFT框架中,理解并正确使用eval_steps和save_steps等参数对于高效训练至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250