探索RankFM:协同过滤推荐的新境界
2024-06-04 13:09:27作者:吴年前Myrtle
项目介绍
RankFM,一个基于Python的因子分解机(Factorization Machines)实现,专为处理大规模的协同过滤推荐和排名问题而设计。它采用Bayesian Personalized Ranking(BPR)和Weighted Approximate-Rank Pairwise(WARP)损失函数,通过Stochastic Gradient Descent(SGD)来优化模型权重。此外,RankFM还支持样本权重和用户/物品的辅助特征,以增强主要交互数据。
该项目的核心方法由Cython编写,保证了在处理数百万用户/物品交互时的高效性。其设计简洁易用,无论是pd.DataFrame还是np.ndarray输入,您无需提前转换数据或重新映射用户/物品标识符。
项目技术分析
RankFM采用了先进的机器学习算法,包括因子分解机和两种不同的优化策略:
- 因子分解机(Factorization Machines):这是一种通用的二阶多项式模型,可以捕捉非线性关系和高维数据中的复杂结构。
- Bayesian Personalized Ranking (BPR):用于从隐式反馈中训练推荐系统,假设未观察到的物品对用户来说排名较低。
- Weighted Approximate-Rank Pairwise (WARP):一种用于优化无序偏好数据的策略,比BPR更能准确地捕获真实世界的排名情况。
利用Cython进行性能优化,RankFM能够在大型数据集上快速运行,并保持良好的内存管理。
项目及技术应用场景
RankFM适用于各种场景,尤其是在需要推荐和排序的领域,如:
- 在线零售:基于用户浏览历史和购买行为进行产品推荐
- 内容分发:根据用户的阅读或观看记录,个性化推荐新闻、视频等
- 社交网络:基于用户的互动行为,推荐可能感兴趣的人或内容
- 音乐流媒体:根据用户的听歌历史推荐歌曲
- 在线广告:定位最有可能点击广告的用户
项目特点
RankFM提供了以下显著特性:
- 兼容性强:支持
pd.DataFrame和np.ndarray数据输入,无需预处理。 - 高效性能:核心代码使用Cython编译,提高计算速度。
- 易于使用:简单直观的API,包括
fit(),predict(),recommend()以及similar_users()和similar_items()。 - 功能丰富:内置多种评估指标,方便模型调优和验证。
- 扩展性:可集成用户和物品的附加特征,以提升模型性能。
要了解更多信息,请访问在线文档,查看示例代码,或阅读关于RankFM算法的详细描述。
# 安装RankFM
pip install rankfm
现在是时候将RankFM的强大功能应用于您的推荐系统,体验其出色的性能和易用性。让我们一起探索这个精彩的开源世界,打造更智能的推荐解决方案!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878