Grafana Mimir分布式部署中的KEDA自动伸缩机制解析
概述
Grafana Mimir作为一款开源的长期存储解决方案,其分布式部署模式支持通过KEDA(Kubernetes Event-driven Autoscaling)实现自动伸缩功能。本文将深入分析Mimir分布式部署中distributor组件的KEDA自动伸缩配置原理,特别是CPU和内存指标的阈值计算方式。
KEDA自动伸缩配置
在Mimir的Helm chart中,distributor组件的自动伸缩可以通过以下配置开启:
distributor:
kedaAutoscaling:
enabled: true
preserveReplicas: false
minReplicaCount: 1
maxReplicaCount: 10
targetCPUUtilizationPercentage: 70
targetMemoryUtilizationPercentage: 70
behavior:
scaleDown:
policies:
- periodSeconds: 600
type: Percent
value: 10
这个配置会生成一个ScaledObject资源,其中包含两个Prometheus查询触发器:一个用于CPU使用率监控,另一个用于内存使用监控。
CPU自动伸缩机制
CPU自动伸缩的阈值计算基于以下公式:
阈值 = 容器CPU请求量 × (targetCPUUtilizationPercentage/100)
例如,当CPU请求量为250m(0.25核),目标利用率为25%时:
250m × 0.25 = 62.5m → 向下取整为62m
KEDA生成的Prometheus查询会计算过去15分钟内每个distributor pod的平均CPU使用率(单位:核),然后乘以1000转换为毫核(millicores):
max_over_time(sum(sum by (pod) (rate(container_cpu_usage_seconds_total{...}[5m])))[15m:]) * 1000
内存自动伸缩机制
内存阈值的计算类似:
阈值 = 容器内存请求量 × (targetMemoryUtilizationPercentage/100)
Prometheus查询会监控工作集内存使用量,并考虑OOMKilled事件:
max_over_time(sum((sum by (pod) (container_memory_working_set_bytes{...}) or vector(0))[15m:])
+ sum(sum by (pod) (max_over_time(kube_pod_container_resource_requests{...}[15m]))
and max by (pod) (changes(kube_pod_container_status_restarts_total{...}[15m]) > 0)
and max by (pod) (kube_pod_container_status_last_terminated_reason{..., reason="OOMKilled"})
or vector(0))
HPA指标显示解析
当查看生成的HPA资源时,可能会发现CPU指标的显示有些令人困惑:
54747m/62
这实际上是Kubernetes的显示特性,其中:
- 54747m表示54.747核(54747/1000)
- 62表示62毫核(0.062核)
这种显示方式虽然看起来不一致,但实际上是正确的,只是单位表示方式需要特别注意。
最佳实践建议
-
合理设置目标利用率:根据实际负载模式调整targetCPUUtilizationPercentage和targetMemoryUtilizationPercentage
-
监控指标验证:定期检查Prometheus查询返回的实际值与HPA显示值是否一致
-
资源请求配置:确保resources.requests设置合理,这是阈值计算的基础
-
缩放行为调优:通过behavior配置控制缩放速度,避免过于频繁的扩缩容
通过深入理解这些机制,用户可以更有效地配置和管理Mimir集群的自动伸缩功能,确保系统在负载变化时能够做出适当的响应。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00