AWS Deep Learning Containers发布PyTorch 2.3.0推理容器
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可以直接在AWS云平台上运行。DLC包含了流行的深度学习框架及其依赖项,简化了深度学习环境的部署过程,让开发者能够快速启动和运行深度学习工作负载。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.3.0推理容器的新版本,支持Python 3.11环境。这一更新为使用PyTorch进行模型推理的用户提供了最新的框架版本和功能支持。
容器镜像概览
本次发布的PyTorch推理容器包含两个主要版本:
-
CPU版本:基于Ubuntu 20.04操作系统,预装了PyTorch 2.3.0 CPU版本及其相关工具链。这个版本适合不需要GPU加速的推理场景,或者开发测试环境使用。
-
GPU版本:同样基于Ubuntu 20.04,但预装了PyTorch 2.3.0 CUDA 12.1版本,支持NVIDIA GPU加速。这个版本针对生产环境中的高性能推理需求进行了优化。
关键软件包版本
两个容器镜像都包含了PyTorch生态系统的核心组件:
- PyTorch主框架:2.3.0版本
- TorchVision:0.18.0版本
- TorchAudio:2.3.0版本
- TorchServe和Torch Model Archiver:0.11.0版本
此外,容器中还预装了常用的数据科学和机器学习工具包:
- NumPy 1.26.4
- Pandas 2.2.2
- scikit-learn 1.5.0
- OpenCV 4.10.0
- Pillow 10.3.0
对于AWS云平台集成,容器包含了:
- AWS CLI 1.33.4
- Boto3 1.34.122
- SageMaker PyTorch Inference 2.0.24
技术特点
-
Python 3.11支持:新版本容器采用了Python 3.11作为默认Python环境,相比之前的版本提供了更好的性能和内存管理。
-
CUDA 12.1支持:GPU版本容器基于CUDA 12.1工具链构建,充分利用了最新NVIDIA GPU的硬件特性。
-
完整的推理工具链:除了PyTorch框架本身,容器还包含了TorchServe模型服务框架和模型归档工具,方便用户部署和管理PyTorch模型。
-
开发友好环境:容器中预装了Emacs等开发工具,方便用户直接在容器中进行开发和调试。
使用场景
这些预构建的PyTorch推理容器特别适合以下场景:
-
云端模型部署:在AWS SageMaker或其他云服务上快速部署PyTorch模型。
-
持续集成/持续部署(CI/CD):作为标准化的测试和部署环境,确保开发和生产环境的一致性。
-
大规模推理服务:利用容器编排技术(如Kubernetes)实现弹性伸缩的推理服务。
-
模型转换和优化:使用容器中提供的工具进行模型格式转换和性能优化。
总结
AWS Deep Learning Containers提供的PyTorch 2.3.0推理容器为开发者提供了一个开箱即用的深度学习环境,大大简化了PyTorch模型部署的复杂度。通过预配置的优化环境和丰富的工具链,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和依赖管理上。
对于需要在AWS云平台上部署PyTorch推理服务的团队,这些容器镜像是一个高效、可靠的解决方案。特别是对于追求最新PyTorch功能和性能优化的用户,2.3.0版本提供了许多改进和新特性,值得考虑升级。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









