AWS Deep Learning Containers发布PyTorch 2.3.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架、库和工具,使开发者能够快速部署深度学习工作负载。这些容器经过优化,可直接在Amazon EC2、Amazon ECS和Amazon EKS等服务上运行,大幅简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了针对PyTorch框架的推理专用容器镜像更新,版本号为v1.34-pt-sagemaker-2.3.0-inf-py311。这次更新主要包含两个关键镜像:CPU版本和GPU版本,均基于Ubuntu 20.04操作系统构建,并预装了Python 3.11环境。
镜像技术细节
CPU版本镜像
CPU版本镜像(pytorch-inference:2.3.0-cpu-py311)专为不需要GPU加速的推理场景设计。它包含了PyTorch 2.3.0框架及其相关组件:
- 核心框架:torch 2.3.0+cpu
- 计算机视觉支持:torchvision 0.18.0+cpu
- 音频处理支持:torchaudio 2.3.0+cpu
- 模型服务工具:torchserve 0.11.0和torch-model-archiver 0.11.0
该镜像还预装了常用的数据处理和科学计算库,如NumPy 1.26.4、Pandas 2.2.2、SciPy 1.13.1和scikit-learn 1.5.0,以及OpenCV 4.10.0用于图像处理任务。
GPU版本镜像
GPU版本镜像(pytorch-inference:2.3.0-gpu-py311-cu121)针对需要CUDA加速的推理工作负载进行了优化,支持NVIDIA CUDA 12.1环境:
- 核心框架:torch 2.3.0+cu121
- 计算机视觉支持:torchvision 0.18.0+cu121
- 音频处理支持:torchaudio 2.3.0+cu121
与CPU版本类似,GPU版本也包含了完整的模型服务工具链和数据处理库。此外,它还预装了CUDA相关的库文件,如libcublas-12-1和libcudnn8,确保能够充分利用GPU的计算能力。
技术优势
-
环境一致性:这些预构建镜像确保了开发、测试和生产环境的一致性,避免了"在我机器上能运行"的问题。
-
性能优化:AWS对镜像中的深度学习框架进行了特定优化,使其在AWS基础设施上运行时能够发挥最佳性能。
-
简化部署:集成了模型服务工具torchserve,开发者可以快速将训练好的模型部署为可扩展的推理服务。
-
安全更新:基于Ubuntu 20.04 LTS构建,定期接收安全更新,确保生产环境的安全性。
-
完整工具链:除了核心框架外,还包含了从数据处理到模型服务的完整工具链,减少了额外配置的工作量。
适用场景
这些PyTorch推理镜像特别适合以下应用场景:
- 需要快速部署PyTorch模型的机器学习工程师
- 构建可扩展的模型推理服务的DevOps团队
- 需要保证环境一致性的MLOps流水线
- 希望减少环境配置时间的个人开发者
AWS Deep Learning Containers的这次更新,为使用PyTorch 2.3.0进行模型推理的用户提供了开箱即用的解决方案,大幅降低了从模型开发到生产部署的复杂度。无论是简单的CPU推理还是需要GPU加速的复杂模型,开发者都可以快速找到适合自己需求的容器镜像。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00