AWS Deep Learning Containers 发布 PyTorch 2.3.0 推理容器镜像
AWS Deep Learning Containers (DLC) 是亚马逊云科技提供的预构建深度学习容器镜像服务,它集成了主流深度学习框架和工具,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可直接在 Amazon EC2 等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers 项目发布了 PyTorch 2.3.0 版本的推理容器镜像更新,主要针对 Python 3.11 环境提供了两种不同配置的镜像:
CPU 版本镜像特性
CPU 版本的 PyTorch 2.3.0 推理容器基于 Ubuntu 20.04 操作系统构建,主要包含以下重要组件:
- PyTorch 2.3.0 + CPU 版本
- TorchVision 0.18.0 + CPU 版本
- TorchAudio 2.3.0 + CPU 版本
- TorchServe 0.11.0 模型服务框架
- Torch Model Archiver 0.11.0 模型打包工具
该镜像还预装了常用的数据处理和科学计算库,包括 NumPy 1.26.4、SciPy 1.13.1、Pandas 2.2.2 和 OpenCV 4.10.0.82,为计算机视觉和机器学习任务提供了完整的工具链。
系统层面,镜像包含了 GCC 9 开发工具链和标准 C++ 库,确保了对各种深度学习模型的编译支持。此外,还预装了 Emacs 编辑器,方便开发者直接在容器内进行代码编辑。
GPU 版本镜像特性
GPU 版本的 PyTorch 2.3.0 推理容器同样基于 Ubuntu 20.04,但针对 NVIDIA GPU 进行了专门优化,主要特性包括:
- PyTorch 2.3.0 + CUDA 12.1 版本
- TorchVision 0.18.0 + CUDA 12.1 版本
- TorchAudio 2.3.0 + CUDA 12.1 版本
- 完整的 CUDA 12.1 工具链
- cuDNN 8 深度神经网络加速库
- cuBLAS 12.1 基础线性代数子程序库
GPU 版本同样包含了 TorchServe 和 Torch Model Archiver 工具,以及完整的 Python 科学计算生态。与 CPU 版本相比,GPU 版本能够充分利用 NVIDIA GPU 的并行计算能力,显著提升深度学习模型的推理速度。
版本兼容性与应用场景
这两个版本的容器镜像都基于 Python 3.11 构建,适合需要最新 Python 特性的项目。PyTorch 2.3.0 带来了多项性能改进和新功能,特别是在模型推理效率方面有所提升。
CPU 版本适合以下场景:
- 开发和测试环境
- 轻量级模型推理
- 成本敏感型应用
- 无需 GPU 加速的任务
GPU 版本则更适合:
- 生产环境中的高性能推理
- 计算密集型模型
- 需要低延迟响应的应用
- 大规模批量推理任务
AWS Deep Learning Containers 的这些预构建镜像大大简化了深度学习应用的部署流程,开发者可以直接使用这些经过充分测试和优化的容器,而无需花费时间配置复杂的环境依赖。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00