LipNet:端到端句子级唇语识别
项目介绍
LipNet 是一个基于 Keras 实现的端到端句子级唇语识别系统,灵感来源于 Yannis M. Assael、Brendan Shillingford、Shimon Whiteson 和 Nando de Freitas 的论文《LipNet: End-to-End Sentence-level Lipreading》。该项目通过深度学习技术,能够从视频中提取唇部动作并将其转换为文字,实现了从无声视频到有声文字的转换。

项目技术分析
LipNet 的核心技术在于其端到端的深度学习模型,该模型能够直接从视频帧中学习唇部动作与文字之间的映射关系。具体来说,LipNet 使用了卷积神经网络(CNN)来提取视频帧中的特征,然后通过循环神经网络(RNN)来捕捉时间序列信息,最后使用连接时序分类(CTC)损失函数来实现端到端的训练。
主要技术组件:
- Keras 2.0+:作为深度学习框架,提供了简洁的 API 来构建和训练模型。
- TensorFlow 1.0+:作为 Keras 的后端,提供了高效的计算能力。
- CTC 损失函数:用于处理序列数据的对齐问题,使得模型能够直接输出文字序列。
项目及技术应用场景
LipNet 的应用场景非常广泛,特别是在需要从无声视频中提取信息的领域。以下是一些典型的应用场景:
- 辅助听力障碍者:通过唇语识别技术,帮助听力障碍者理解对话内容。
- 安全监控:在监控视频中自动识别和记录对话内容,提高安全监控的效率。
- 教育与培训:用于语言学习或培训视频中,自动生成字幕或翻译。
- 视频内容分析:在视频内容分析中,自动提取对话内容,辅助内容理解与分析。
项目特点
1. 端到端训练
LipNet 采用了端到端的训练方式,直接从视频帧到文字输出,简化了传统方法中需要手动设计特征提取器的过程。
2. 高精度识别
通过在 GRID 语料库上的训练,LipNet 在不同场景下表现出色,特别是在重叠说话者场景下,WER(词错误率)仅为 3.38%,BLEU 得分高达 96.93%。
3. 灵活的训练与评估
项目提供了多种训练场景和预训练权重,用户可以根据需要选择不同的训练方式或直接使用预训练模型进行评估。
4. 开源与社区支持
作为开源项目,LipNet 鼓励社区贡献,用户可以自由修改和扩展模型,同时项目也提供了详细的文档和教程,帮助用户快速上手。
总结
LipNet 是一个具有高精度和广泛应用前景的唇语识别系统,通过端到端的深度学习技术,实现了从无声视频到有声文字的转换。无论是在辅助听力障碍者、安全监控,还是在教育与培训等领域,LipNet 都展现出了巨大的潜力。如果你对唇语识别技术感兴趣,或者希望在相关领域进行创新应用,LipNet 绝对是一个值得尝试的开源项目。
立即访问 LipNet GitHub 仓库,开始你的唇语识别之旅吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00