MS-G3D 开源项目使用教程
2024-08-15 18:36:32作者:滑思眉Philip
项目介绍
MS-G3D 是一个基于 PyTorch 实现的深度学习框架,旨在解决基于骨架数据的动作识别问题。该框架提出了“解耦与统一图卷积”的方法,这是在计算机视觉领域顶级会议 CVPR 2020 上发表的研究成果。通过优化图神经网络在骨架序列上的处理方式,MS-G3D 提升了动作识别的准确性和效率,成为研究和应用中的一个重要工具。
项目快速启动
环境准备
首先,确保你的开发环境中安装了 Python 3.6 或更高版本以及 PyTorch。可以通过以下命令安装必要的依赖:
pip install torch torchvision numpy
克隆项目
克隆 MS-G3D 项目到本地:
git clone https://github.com/kenziyuliu/ms-g3d.git
cd ms-g3d
快速运行示例
为了快速体验 MS-G3D,你可以加载预训练模型并进行简单的评估或可视化操作。下面的命令展示了如何评估一个预训练模型:
python eval_pretrained.py --model_name ms_g3d --dataset nturgbd_skeleton
记得替换相应的配置文件路径和参数以适应你的需求。
应用案例和最佳实践
MS-G3D 被广泛应用于人体行为分析、智能安防监控、远程健康监测等多个场景。最佳实践包括:
- 多数据集适配:调整配置文件中的参数,使模型能够有效学习NTU RGB+D等标准骨骼数据集。
- 模型微调:利用自己的小规模标注数据来微调预训练模型,提高特定场景的识别精度。
- 融合多模态数据:虽然本项目专注于骨架数据,但可以结合视频帧等其他模态信息,提升模型表现。
典型生态项目
由于MS-G3D主要聚焦于骨架数据的动作识别,其生态系统紧密围绕着动作识别的应用扩展,例如:
- 交互式AI健身应用:运用动作识别技术提供实时运动指导和反馈。
- 无障碍技术:通过理解手势动作辅助残障人士的日常沟通和控制智能家居。
- 体育分析:在专业体育领域分析运动员的动作技巧,用于训练和比赛策略制定。
通过社区贡献和持续研究,MS-G3D及其衍生工作不断推动着基于骨架数据的动作识别技术向前发展。
以上便是对MS-G3D开源项目的简要入门指南,更多详细信息与高级应用,请查阅项目官方GitHub页面的文档和相关论文。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5