Wide & Deep Learning for CTR Prediction 在TensorFlow上的实践教程
2024-09-24 13:54:26作者:裘旻烁
1. 项目介绍
宽与深学习(Wide & Deep Learning) 是一个结合了广泛线性模型和深层次神经网络模型的框架,最初由Google在《Wide & Deep Learning for Recommender Systems》一文中提出,旨在同时利用记忆(wide部分)和泛化(deep部分)的能力。此开源项目 Lapis-Hong/wide_deep 提供了一个在TensorFlow环境下的实现,适用于点击率预测(CTR)等任务。通过该框架,开发者可以灵活配置特征,支持分布式训练,以及对不平衡样本加权,并且提供了预处理脚本来增强数据处理能力。
2. 项目快速启动
安装依赖
确保你的环境中已经安装了TensorFlow和其他必要的Python库。如果未安装,可以通过下面命令安装TensorFlow:
pip install tensorflow
此外,也需检查是否有其他可能的依赖项,如pyspark,通过项目的requirements.txt文件安装所有必需的包:
pip install -r requirements.txt
配置设置
在开始之前,你需要编辑配置文件:
conf/feature.yaml: 设置特征配置。conf/model.yaml: 设定模型参数。conf/train.yaml: 配置训练过程。
运行代码
本地训练可以简单通过以下命令执行:
cd python
python train.py
如果你想通过shell脚本来简化操作,可以使用提供的脚本:
cd scripts
bash train.sh
3. 应用案例和最佳实践
应用案例
- 点击率预测:在推荐系统中,该模型通过结合广泛特征的线性部分和深度特征的非线性部分,有效地预测用户是否会对特定推荐内容产生点击行为。
最佳实践
- 特征工程:有效利用稀疏特征和密集特征,通过
feature.yaml细致配置。 - 平衡训练集:处理数据不平衡问题,可通过配置权重列来重视少数类样本。
- 模型调优:监控训练过程,根据验证集性能调整学习率、正则化强度等超参数。
- 分布式训练准备:对于大规模数据集,利用提供的分布式训练支持,通过修改训练脚本以适应分布式环境。
4. 典型生态项目
虽然直接关联的典型生态项目信息并未在提供链接的内容内明确指出,但可以推测,任何基于TensorFlow的推荐系统或点击率预测项目都能视为该框架的应用延伸。例如,电商推荐、新闻个性化推送系统等,均可以采用这种混合模型来提升预测精度和用户体验。开发者可以在自己的应用中融入wide_deep模型,或将之集成到更大的机器学习生态系统,如TensorFlow Serving,来实现模型的线上服务化。
以上步骤和说明为快速入门指南,实际应用时还需深入研究源码和相关文档以了解更多高级特性和细节。通过实践这些步骤,你可以迅速开始使用wide_deep进行CTR预测或其他相关领域的研究与开发。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869