首页
/ Wide & Deep Learning for CTR Prediction 在TensorFlow上的实践教程

Wide & Deep Learning for CTR Prediction 在TensorFlow上的实践教程

2024-09-24 00:12:39作者:裘旻烁

1. 项目介绍

宽与深学习(Wide & Deep Learning) 是一个结合了广泛线性模型和深层次神经网络模型的框架,最初由Google在《Wide & Deep Learning for Recommender Systems》一文中提出,旨在同时利用记忆(wide部分)和泛化(deep部分)的能力。此开源项目 Lapis-Hong/wide_deep 提供了一个在TensorFlow环境下的实现,适用于点击率预测(CTR)等任务。通过该框架,开发者可以灵活配置特征,支持分布式训练,以及对不平衡样本加权,并且提供了预处理脚本来增强数据处理能力。

2. 项目快速启动

安装依赖

确保你的环境中已经安装了TensorFlow和其他必要的Python库。如果未安装,可以通过下面命令安装TensorFlow:

pip install tensorflow

此外,也需检查是否有其他可能的依赖项,如pyspark,通过项目的requirements.txt文件安装所有必需的包:

pip install -r requirements.txt

配置设置

在开始之前,你需要编辑配置文件:

  • conf/feature.yaml: 设置特征配置。
  • conf/model.yaml: 设定模型参数。
  • conf/train.yaml: 配置训练过程。

运行代码

本地训练可以简单通过以下命令执行:

cd python
python train.py

如果你想通过shell脚本来简化操作,可以使用提供的脚本:

cd scripts
bash train.sh

3. 应用案例和最佳实践

应用案例

  • 点击率预测:在推荐系统中,该模型通过结合广泛特征的线性部分和深度特征的非线性部分,有效地预测用户是否会对特定推荐内容产生点击行为。

最佳实践

  • 特征工程:有效利用稀疏特征和密集特征,通过feature.yaml细致配置。
  • 平衡训练集:处理数据不平衡问题,可通过配置权重列来重视少数类样本。
  • 模型调优:监控训练过程,根据验证集性能调整学习率、正则化强度等超参数。
  • 分布式训练准备:对于大规模数据集,利用提供的分布式训练支持,通过修改训练脚本以适应分布式环境。

4. 典型生态项目

虽然直接关联的典型生态项目信息并未在提供链接的内容内明确指出,但可以推测,任何基于TensorFlow的推荐系统或点击率预测项目都能视为该框架的应用延伸。例如,电商推荐、新闻个性化推送系统等,均可以采用这种混合模型来提升预测精度和用户体验。开发者可以在自己的应用中融入wide_deep模型,或将之集成到更大的机器学习生态系统,如TensorFlow Serving,来实现模型的线上服务化。


以上步骤和说明为快速入门指南,实际应用时还需深入研究源码和相关文档以了解更多高级特性和细节。通过实践这些步骤,你可以迅速开始使用wide_deep进行CTR预测或其他相关领域的研究与开发。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5