Super-Gradients项目中YOLO-NAS模型导出ONNX格式的注意事项
2025-06-11 16:25:47作者:鲍丁臣Ursa
在深度学习模型部署过程中,将PyTorch模型转换为ONNX格式是一个常见需求。本文针对Super-Gradients项目中YOLO-NAS模型导出ONNX格式时可能遇到的问题进行技术分析,并提供解决方案。
模型输出异常问题分析
在模型导出过程中,开发者可能会遇到输出结果异常的情况,表现为:
- 输出包含负值
- 边界框坐标范围异常
- 与原始PyTorch模型输出不一致
这些问题通常源于预处理和后处理步骤的配置不当。YOLO-NAS模型在导出时默认会嵌入预处理(图像归一化)和后处理(NMS)步骤,这可能导致以下情况:
- 如果开发者额外添加了自定义的预处理步骤,会导致双重处理
- 输出边界框坐标未被裁剪到图像边界范围内,可能产生小的负值
解决方案是确保在导出时仅使用模型内置的预处理和后处理,避免额外添加处理步骤。
输入尺寸配置问题
另一个常见问题是输入尺寸配置不当。开发者可能尝试通过多种方式设置输入尺寸,但需要注意:
- 避免使用已弃用的
convert_to_onnx方法 - 正确使用
model.export()方法并指定input_image_shape参数
正确的导出方式应为:
export_result = model.export("yolo_nas_s_custom.onnx",
input_image_shape=(custom_height, custom_width))
FP16精度导出
关于FP16精度的导出,虽然问题中没有详细讨论解决方案,但通常可以通过以下方式实现:
- 在导出时指定精度参数
- 确保目标部署环境支持FP16推理
- 注意精度降低可能对模型性能的影响
模型架构选择建议
针对小型化部署需求,虽然当前YOLO-NAS系列最小模型为S尺寸,但开发者可以:
- 考虑模型量化技术进一步减小模型体积
- 调整模型宽度和深度参数进行定制化裁剪
- 关注项目更新,未来可能会推出更小的Nano版本
总结
在Super-Gradients项目中使用YOLO-NAS模型导出ONNX格式时,开发者应当:
- 理解并合理配置预处理和后处理流程
- 使用正确的API和参数设置输入尺寸
- 根据部署需求选择合适的精度和模型大小
- 关注项目更新以获取最新的模型架构和功能
通过遵循这些最佳实践,可以确保模型导出过程的顺利进行,并获得符合预期的ONNX模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
500
3.65 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
489
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
315
134
React Native鸿蒙化仓库
JavaScript
298
347
暂无简介
Dart
747
180
Ascend Extension for PyTorch
Python
303
345
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882