Super-Gradients项目中YOLO-NAS模型的ONNX导出与后处理解析
2025-06-11 21:59:41作者:龚格成
概述
在计算机视觉领域,YOLO-NAS作为最新一代的目标检测模型,其高效的架构设计吸引了众多开发者的关注。本文将深入探讨如何在使用Super-Gradients框架时,正确导出YOLO-NAS模型为ONNX格式,并处理其输出结果。
模型导出方法对比
开发者通常会采用两种方式导出YOLO-NAS模型为ONNX格式:
- 手动导出方法:
model.eval()
model.prep_model_for_conversion(input_size=[1, 3, 320, 320])
dummy_input = torch.randn([1, 3, 320, 320], device="cpu")
torch.onnx.export(model, dummy_input, "yolo_nas_s.onnx", opset_version=11)
这种方法虽然可行,但存在几个局限性:
- 仅导出模型主体部分,不包括预处理和后处理流程
- 输出结果较为原始,需要开发者自行解析
- 缺乏对量化等高级特性的支持
- 推荐导出方法:
Super-Gradients框架提供了专门的
model.export()方法,该方法不仅封装了模型导出过程,还支持:
- 完整的预处理和后处理流程集成
- 多种导出格式支持(ONNX、TensorRT等)
- 量化功能
- 更简洁的API接口
输出结果解析
当使用手动导出方法时,模型会产生两个输出张量:
- 形状为(1, 2100, 80)的类别分数矩阵
- 形状为(1, 2100, 4)的边界框坐标矩阵
这些原始输出需要开发者自行处理才能得到最终检测结果。相比之下,使用框架提供的导出方法会直接输出经过后处理的结果,包括:
- 检测框数量
- 归一化的边界框坐标
- 类别置信度
- 类别标签
后处理实现方案
对于选择手动导出的开发者,可以使用框架提供的PPYoloEPostPredictionCallback类来处理原始输出。这个后处理器主要完成以下工作:
- 非极大值抑制(NMS)处理,消除冗余检测框
- 置信度阈值过滤,去除低质量预测
- 将边界框坐标从模型输出格式转换为实际图像坐标
- 处理多类别情况下的分数矩阵
最佳实践建议
- 对于生产环境,强烈建议使用框架提供的
model.export()方法 - 若需自定义导出流程,应确保理解模型原始输出的数据结构
- 后处理参数(如NMS阈值、置信度阈值)应根据实际应用场景调整
- 导出前务必进行模型验证,确保ONNX模型与原始PyTorch模型行为一致
总结
YOLO-NAS作为高效的目标检测模型,其ONNX导出和后处理流程需要特别注意。Super-Gradients框架提供了完整的工具链支持,开发者应根据项目需求选择合适的导出方式,并确保正确处理模型输出以获得最佳检测效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660