Super-Gradients项目中YOLO-NAS模型的ONNX导出与后处理解析
2025-06-11 07:18:31作者:龚格成
概述
在计算机视觉领域,YOLO-NAS作为最新一代的目标检测模型,其高效的架构设计吸引了众多开发者的关注。本文将深入探讨如何在使用Super-Gradients框架时,正确导出YOLO-NAS模型为ONNX格式,并处理其输出结果。
模型导出方法对比
开发者通常会采用两种方式导出YOLO-NAS模型为ONNX格式:
- 手动导出方法:
model.eval()
model.prep_model_for_conversion(input_size=[1, 3, 320, 320])
dummy_input = torch.randn([1, 3, 320, 320], device="cpu")
torch.onnx.export(model, dummy_input, "yolo_nas_s.onnx", opset_version=11)
这种方法虽然可行,但存在几个局限性:
- 仅导出模型主体部分,不包括预处理和后处理流程
- 输出结果较为原始,需要开发者自行解析
- 缺乏对量化等高级特性的支持
- 推荐导出方法:
Super-Gradients框架提供了专门的
model.export()
方法,该方法不仅封装了模型导出过程,还支持:
- 完整的预处理和后处理流程集成
- 多种导出格式支持(ONNX、TensorRT等)
- 量化功能
- 更简洁的API接口
输出结果解析
当使用手动导出方法时,模型会产生两个输出张量:
- 形状为(1, 2100, 80)的类别分数矩阵
- 形状为(1, 2100, 4)的边界框坐标矩阵
这些原始输出需要开发者自行处理才能得到最终检测结果。相比之下,使用框架提供的导出方法会直接输出经过后处理的结果,包括:
- 检测框数量
- 归一化的边界框坐标
- 类别置信度
- 类别标签
后处理实现方案
对于选择手动导出的开发者,可以使用框架提供的PPYoloEPostPredictionCallback
类来处理原始输出。这个后处理器主要完成以下工作:
- 非极大值抑制(NMS)处理,消除冗余检测框
- 置信度阈值过滤,去除低质量预测
- 将边界框坐标从模型输出格式转换为实际图像坐标
- 处理多类别情况下的分数矩阵
最佳实践建议
- 对于生产环境,强烈建议使用框架提供的
model.export()
方法 - 若需自定义导出流程,应确保理解模型原始输出的数据结构
- 后处理参数(如NMS阈值、置信度阈值)应根据实际应用场景调整
- 导出前务必进行模型验证,确保ONNX模型与原始PyTorch模型行为一致
总结
YOLO-NAS作为高效的目标检测模型,其ONNX导出和后处理流程需要特别注意。Super-Gradients框架提供了完整的工具链支持,开发者应根据项目需求选择合适的导出方式,并确保正确处理模型输出以获得最佳检测效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K