Super-Gradients项目中YOLO-NAS模型PTQ与QTA导出ONNX形状差异解析
2025-06-11 03:52:23作者:房伟宁
背景概述
在深度学习模型部署过程中,模型量化是提高推理效率的重要手段。Super-Gradients作为Deci-AI推出的训练库,提供了YOLO-NAS模型的完整训练和量化支持。近期有用户发现,在使用该库进行PTQ(后训练量化)和QTA(量化感知训练)后,导出的ONNX模型在输入输出形状上存在显著差异。
现象描述
当用户按照官方文档流程对YOLO-NAS模型进行PTQ和QTA处理后,发现两种量化方式导出的ONNX模型结构不同:
-
PTQ导出的ONNX模型:包含4个输出节点,分别为:
- int64[1, 1]格式的输出
- float32[1, N, M]格式的输出
- float32[1, N]格式的输出
- int64[1, N]格式的输出
-
QTA导出的ONNX模型:仅包含2个输出节点:
- float32[16, 8400, 4]格式的输出
- float32[16, 8400, 3]格式的输出
技术原理分析
这种差异源于Super-Gradients库中两种量化流程的实现方式不同:
-
PTQ量化流程:直接通过
model.export()方法实现,该方法支持在导出时附加后处理(NMS)模块,因此输出的ONNX模型已经包含了完整的检测流程,输出的是经过解码的边界框信息。 -
QTA量化流程:通过Trainer进行训练,目前尚未完全集成新的export() API,因此在导出QAT模型时无法附加后处理模块,导出的ONNX仅包含模型本身的输出特征。
解决方案演进
在项目的最新进展中,开发团队已经通过PR#1879解决了这一问题。现在无论是QAT还是PTQ,都统一使用模型的.export()方法进行导出,确保了输出形状的一致性。这一改进使得:
- 两种量化方式导出的模型具有相同的输入输出结构
- 用户可以使用统一的接口处理量化后的模型
- 简化了模型部署流程
实践建议
对于需要使用量化版YOLO-NAS模型的开发者,建议:
- 使用最新版本的Super-Gradients库,确保获得一致的导出行为
- 在导出模型时明确指定是否需要包含后处理模块
- 对于生产环境部署,建议进行充分的量化效果验证
- 注意不同量化方式对模型精度和速度的影响差异
总结
模型量化是边缘部署的关键技术,理解不同量化方式的实现差异对于成功部署至关重要。Super-Gradients库通过持续改进,正在提供更加统一和便捷的量化体验,帮助开发者更高效地将YOLO-NAS等先进模型部署到实际应用中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328