Super-Gradients项目中YOLO-NAS模型PTQ与QTA导出ONNX形状差异解析
2025-06-11 20:52:11作者:房伟宁
背景概述
在深度学习模型部署过程中,模型量化是提高推理效率的重要手段。Super-Gradients作为Deci-AI推出的训练库,提供了YOLO-NAS模型的完整训练和量化支持。近期有用户发现,在使用该库进行PTQ(后训练量化)和QTA(量化感知训练)后,导出的ONNX模型在输入输出形状上存在显著差异。
现象描述
当用户按照官方文档流程对YOLO-NAS模型进行PTQ和QTA处理后,发现两种量化方式导出的ONNX模型结构不同:
-
PTQ导出的ONNX模型:包含4个输出节点,分别为:
- int64[1, 1]格式的输出
- float32[1, N, M]格式的输出
- float32[1, N]格式的输出
- int64[1, N]格式的输出
-
QTA导出的ONNX模型:仅包含2个输出节点:
- float32[16, 8400, 4]格式的输出
- float32[16, 8400, 3]格式的输出
技术原理分析
这种差异源于Super-Gradients库中两种量化流程的实现方式不同:
-
PTQ量化流程:直接通过
model.export()方法实现,该方法支持在导出时附加后处理(NMS)模块,因此输出的ONNX模型已经包含了完整的检测流程,输出的是经过解码的边界框信息。 -
QTA量化流程:通过Trainer进行训练,目前尚未完全集成新的export() API,因此在导出QAT模型时无法附加后处理模块,导出的ONNX仅包含模型本身的输出特征。
解决方案演进
在项目的最新进展中,开发团队已经通过PR#1879解决了这一问题。现在无论是QAT还是PTQ,都统一使用模型的.export()方法进行导出,确保了输出形状的一致性。这一改进使得:
- 两种量化方式导出的模型具有相同的输入输出结构
- 用户可以使用统一的接口处理量化后的模型
- 简化了模型部署流程
实践建议
对于需要使用量化版YOLO-NAS模型的开发者,建议:
- 使用最新版本的Super-Gradients库,确保获得一致的导出行为
- 在导出模型时明确指定是否需要包含后处理模块
- 对于生产环境部署,建议进行充分的量化效果验证
- 注意不同量化方式对模型精度和速度的影响差异
总结
模型量化是边缘部署的关键技术,理解不同量化方式的实现差异对于成功部署至关重要。Super-Gradients库通过持续改进,正在提供更加统一和便捷的量化体验,帮助开发者更高效地将YOLO-NAS等先进模型部署到实际应用中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1