f-lm 项目使用教程
2024-09-26 04:39:46作者:邓越浪Henry
1. 项目的目录结构及介绍
f-lm/
├── LICENSE
├── README.md
├── __init__.py
├── common.py
├── data_utils.py
├── data_utils_test.py
├── flstm.py
├── glstm.py
├── hparams.py
├── hparams_test.py
├── language_model.py
├── language_model_test.py
├── model_utils.py
├── run_utils.py
├── single_lm_train.py
└── testdata/
└── 1b_word_vocab.txt
目录结构介绍
LICENSE
: 项目的开源许可证文件。README.md
: 项目的介绍文档。__init__.py
: Python 包的初始化文件。common.py
: 包含项目中常用的函数和工具。data_utils.py
: 数据处理相关的工具函数。data_utils_test.py
: 数据处理工具函数的测试文件。flstm.py
: F-LSTM 模型的实现。glstm.py
: G-LSTM 模型的实现。hparams.py
: 超参数配置文件。hparams_test.py
: 超参数配置文件的测试。language_model.py
: 语言模型的实现。language_model_test.py
: 语言模型的测试文件。model_utils.py
: 模型相关的工具函数。run_utils.py
: 运行相关的工具函数。single_lm_train.py
: 单机训练脚本。testdata/
: 测试数据目录,包含词汇表文件1b_word_vocab.txt
。
2. 项目的启动文件介绍
single_lm_train.py
single_lm_train.py
是项目的启动文件,用于在单机上训练语言模型。该脚本支持多 GPU 数据并行,使用同步梯度更新。
主要功能
- 加载数据并进行预处理。
- 初始化模型(F-LSTM 或 G-LSTM)。
- 配置训练参数,如学习率、批量大小、训练步数等。
- 启动训练过程,并保存训练日志和模型检查点。
使用示例
python single_lm_train.py --logdir=/path/to/logdir --num_gpus=4 --datadir=/path/to/data --hpconfig=...
3. 项目的配置文件介绍
hparams.py
hparams.py
文件包含了模型的超参数配置。这些超参数可以在训练时通过命令行参数进行覆盖。
主要超参数
batch_size
: 每个 GPU 的批量大小。num_steps
: LSTM 单元的步数。num_shards
: 嵌入和 softmax 矩阵的分片数。num_layers
: LSTM 层的数量。learning_rate
: 学习率。max_grad_norm
: LSTM 层的最大梯度范数。keep_prob
: Dropout 的保留概率。emb_size
: 嵌入大小。projected_size
: LSTM 投影大小。state_size
: LSTM 单元大小。num_sampled
: 训练时使用的采样 softmax 的数量。fact_size
: F-LSTM 单元的因子大小。num_of_groups
: G-LSTM 单元的组数。
使用示例
python single_lm_train.py --hpconfig=batch_size=128,num_steps=20,num_layers=2,learning_rate=0.2,...
通过 --hpconfig
参数可以覆盖默认的超参数配置。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3