在Sentence-Transformers中使用三元组数据进行对比学习的技术探讨
背景介绍
在自然语言处理领域,Sentence-Transformers项目提供了强大的句子嵌入模型训练框架。近期有研究者提出了一种基于三元组数据(query、positive、negative)的对比学习需求,希望探索如何利用多种损失函数来提升模型性能。
三元组数据与损失函数的适配性分析
Sentence-Transformers框架支持多种损失函数,但并非所有损失函数都原生支持三元组数据格式。根据框架设计,目前明确支持三元组数据的损失函数包括:
- MultipleNegativesRankingLoss
- CachedMultipleNegativesRankingLoss
- TripletLoss
- CachedGISTEmbedLoss
- GISTEmbedLoss
这些损失函数专门设计用于处理包含查询语句、正例和负例的三元组数据,能够有效地学习句子之间的语义关系。
使用AnglELoss的变通方案
对于希望使用AnglELoss的研究者,虽然该损失函数原生设计用于成对数据,但可以通过数据转换的方式尝试应用于三元组场景。具体转换方法如下:
将原始的三元组数据:
query1, positive1, negative1
query2, positive2, negative2
转换为成对数据并添加相似度标签:
query1, positive1, 1.0
query1, negative1, 0.0
query2, positive2, 1.0
query2, negative2, 0.0
这种转换保留了原始三元组中的对比信息,使其能够适配AnglELoss等设计用于成对数据的损失函数。但需要注意,这种转换可能会损失部分三元组特有的对比信息,影响模型性能。
技术建议与最佳实践
-
对于三元组数据,优先使用原生支持的损失函数,如MultipleNegativesRankingLoss或TripletLoss,这些损失函数专门为三元组对比学习设计,能更好地利用数据中的对比信息。
-
如果确实需要使用AnglELoss,建议进行充分的实验对比,评估转换后的数据对模型性能的影响。
-
可以考虑组合使用多种损失函数,例如同时使用AnglELoss和TripletLoss,通过加权求和的方式结合两者的优势。
-
在实验过程中,建议使用相同的评估指标和测试集,确保不同配置下的结果具有可比性。
总结
Sentence-Transformers框架为句子嵌入模型的训练提供了灵活多样的选择。针对三元组数据,研究者可以根据具体需求选择合适的损失函数,或通过数据转换的方式适配更多损失函数类型。在实际应用中,建议通过实验验证不同方案的效果,找到最适合特定任务和数据的配置方案。
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
2025百大提名项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04
热门内容推荐
最新内容推荐
项目优选









