在Sentence-Transformers中使用三元组数据进行对比学习的技术探讨
背景介绍
在自然语言处理领域,Sentence-Transformers项目提供了强大的句子嵌入模型训练框架。近期有研究者提出了一种基于三元组数据(query、positive、negative)的对比学习需求,希望探索如何利用多种损失函数来提升模型性能。
三元组数据与损失函数的适配性分析
Sentence-Transformers框架支持多种损失函数,但并非所有损失函数都原生支持三元组数据格式。根据框架设计,目前明确支持三元组数据的损失函数包括:
- MultipleNegativesRankingLoss
- CachedMultipleNegativesRankingLoss
- TripletLoss
- CachedGISTEmbedLoss
- GISTEmbedLoss
这些损失函数专门设计用于处理包含查询语句、正例和负例的三元组数据,能够有效地学习句子之间的语义关系。
使用AnglELoss的变通方案
对于希望使用AnglELoss的研究者,虽然该损失函数原生设计用于成对数据,但可以通过数据转换的方式尝试应用于三元组场景。具体转换方法如下:
将原始的三元组数据:
query1, positive1, negative1
query2, positive2, negative2
转换为成对数据并添加相似度标签:
query1, positive1, 1.0
query1, negative1, 0.0
query2, positive2, 1.0
query2, negative2, 0.0
这种转换保留了原始三元组中的对比信息,使其能够适配AnglELoss等设计用于成对数据的损失函数。但需要注意,这种转换可能会损失部分三元组特有的对比信息,影响模型性能。
技术建议与最佳实践
-
对于三元组数据,优先使用原生支持的损失函数,如MultipleNegativesRankingLoss或TripletLoss,这些损失函数专门为三元组对比学习设计,能更好地利用数据中的对比信息。
-
如果确实需要使用AnglELoss,建议进行充分的实验对比,评估转换后的数据对模型性能的影响。
-
可以考虑组合使用多种损失函数,例如同时使用AnglELoss和TripletLoss,通过加权求和的方式结合两者的优势。
-
在实验过程中,建议使用相同的评估指标和测试集,确保不同配置下的结果具有可比性。
总结
Sentence-Transformers框架为句子嵌入模型的训练提供了灵活多样的选择。针对三元组数据,研究者可以根据具体需求选择合适的损失函数,或通过数据转换的方式适配更多损失函数类型。在实际应用中,建议通过实验验证不同方案的效果,找到最适合特定任务和数据的配置方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00