在Sentence-Transformers中使用三元组数据进行对比学习的技术探讨
背景介绍
在自然语言处理领域,Sentence-Transformers项目提供了强大的句子嵌入模型训练框架。近期有研究者提出了一种基于三元组数据(query、positive、negative)的对比学习需求,希望探索如何利用多种损失函数来提升模型性能。
三元组数据与损失函数的适配性分析
Sentence-Transformers框架支持多种损失函数,但并非所有损失函数都原生支持三元组数据格式。根据框架设计,目前明确支持三元组数据的损失函数包括:
- MultipleNegativesRankingLoss
- CachedMultipleNegativesRankingLoss
- TripletLoss
- CachedGISTEmbedLoss
- GISTEmbedLoss
这些损失函数专门设计用于处理包含查询语句、正例和负例的三元组数据,能够有效地学习句子之间的语义关系。
使用AnglELoss的变通方案
对于希望使用AnglELoss的研究者,虽然该损失函数原生设计用于成对数据,但可以通过数据转换的方式尝试应用于三元组场景。具体转换方法如下:
将原始的三元组数据:
query1, positive1, negative1
query2, positive2, negative2
转换为成对数据并添加相似度标签:
query1, positive1, 1.0
query1, negative1, 0.0
query2, positive2, 1.0
query2, negative2, 0.0
这种转换保留了原始三元组中的对比信息,使其能够适配AnglELoss等设计用于成对数据的损失函数。但需要注意,这种转换可能会损失部分三元组特有的对比信息,影响模型性能。
技术建议与最佳实践
-
对于三元组数据,优先使用原生支持的损失函数,如MultipleNegativesRankingLoss或TripletLoss,这些损失函数专门为三元组对比学习设计,能更好地利用数据中的对比信息。
-
如果确实需要使用AnglELoss,建议进行充分的实验对比,评估转换后的数据对模型性能的影响。
-
可以考虑组合使用多种损失函数,例如同时使用AnglELoss和TripletLoss,通过加权求和的方式结合两者的优势。
-
在实验过程中,建议使用相同的评估指标和测试集,确保不同配置下的结果具有可比性。
总结
Sentence-Transformers框架为句子嵌入模型的训练提供了灵活多样的选择。针对三元组数据,研究者可以根据具体需求选择合适的损失函数,或通过数据转换的方式适配更多损失函数类型。在实际应用中,建议通过实验验证不同方案的效果,找到最适合特定任务和数据的配置方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00