MLCommons Inference 项目使用教程
2024-09-16 06:12:57作者:董宙帆
1. 项目目录结构及介绍
MLCommons Inference 项目的目录结构如下:
inference/
├── README.md
├── LICENSE
├── setup.py
├── requirements.txt
├── examples/
│ ├── README.md
│ ├── example1.py
│ └── example2.py
├── src/
│ ├── __init__.py
│ ├── inference.py
│ └── utils.py
├── tests/
│ ├── test_inference.py
│ └── test_utils.py
└── configs/
├── config.yaml
└── logging.yaml
目录结构介绍
- README.md: 项目的主文档,包含项目的概述、安装指南和使用说明。
- LICENSE: 项目的开源许可证文件。
- setup.py: 项目的安装脚本,用于安装项目所需的依赖。
- requirements.txt: 项目所需的Python依赖包列表。
- examples/: 包含项目的示例代码,帮助用户快速上手。
- src/: 项目的源代码目录,包含主要的推理模块和工具函数。
- tests/: 项目的测试代码目录,包含单元测试和集成测试。
- configs/: 项目的配置文件目录,包含推理和日志的配置文件。
2. 项目启动文件介绍
项目的启动文件位于 src/inference.py,该文件是整个推理系统的入口点。以下是该文件的主要功能介绍:
# src/inference.py
import argparse
from .utils import load_config, setup_logging
def main():
parser = argparse.ArgumentParser(description="MLCommons Inference System")
parser.add_argument('--config', type=str, default='configs/config.yaml', help='Path to the configuration file')
args = parser.parse_args()
config = load_config(args.config)
setup_logging(config['logging'])
# 启动推理系统
inference_system = InferenceSystem(config)
inference_system.run()
if __name__ == "__main__":
main()
启动文件功能介绍
- argparse: 用于解析命令行参数,用户可以通过
--config参数指定配置文件路径。 - load_config: 从指定的配置文件中加载配置信息。
- setup_logging: 根据配置文件中的日志配置信息初始化日志系统。
- InferenceSystem: 初始化推理系统,并启动推理过程。
3. 项目配置文件介绍
项目的配置文件位于 configs/ 目录下,主要包括 config.yaml 和 logging.yaml 两个文件。
config.yaml
config.yaml 文件包含了推理系统的主要配置信息,例如模型路径、数据集路径、推理参数等。以下是一个示例配置文件的内容:
model:
path: "models/model.pth"
type: "torch"
dataset:
path: "data/dataset.csv"
format: "csv"
inference:
batch_size: 32
num_workers: 4
logging.yaml
logging.yaml 文件包含了日志系统的配置信息,例如日志级别、日志格式、日志输出路径等。以下是一个示例配置文件的内容:
version: 1
disable_existing_loggers: false
formatters:
simple:
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
loggers:
inference:
level: DEBUG
handlers: [console]
propagate: no
配置文件功能介绍
- config.yaml: 用于配置推理系统的主要参数,包括模型路径、数据集路径、推理参数等。
- logging.yaml: 用于配置日志系统,包括日志级别、日志格式、日志输出路径等。
通过这些配置文件,用户可以灵活地调整推理系统的行为,以适应不同的应用场景。
以上是 MLCommons Inference 项目的使用教程,希望对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K
仓颉编译器源码及 cjdb 调试工具。
C++
112
78
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
532
117
仓颉编程语言运行时与标准库。
Cangjie
122
93
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588
Ascend Extension for PyTorch
Python
75
106
仓颉编程语言测试用例。
Cangjie
34
61
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401