MLCommons 训练项目教程
2024-09-15 04:42:36作者:咎岭娴Homer
1. 项目目录结构及介绍
MLCommons 训练项目的目录结构如下:
training/
├── README.md
├── LICENSE
├── requirements.txt
├── setup.py
├── data/
├── models/
├── scripts/
├── tests/
└── src/
├── __init__.py
├── main.py
├── config.py
├── utils.py
└── ...
目录结构介绍
- README.md: 项目的介绍文件,包含项目的基本信息、安装步骤、使用说明等。
- LICENSE: 项目的开源许可证文件。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 项目的安装脚本,用于安装项目及其依赖。
- data/: 存放训练数据集的目录。
- models/: 存放训练好的模型文件的目录。
- scripts/: 存放一些辅助脚本的目录。
- tests/: 存放测试代码的目录。
- src/: 项目的源代码目录。
- init.py: 使
src
目录成为一个 Python 包。 - main.py: 项目的启动文件。
- config.py: 项目的配置文件。
- utils.py: 包含一些通用的工具函数。
- ...: 其他模块和文件。
- init.py: 使
2. 项目的启动文件介绍
项目的启动文件是 src/main.py
。该文件是整个项目的入口点,负责初始化配置、加载数据、训练模型等核心功能。
main.py
文件内容概览
import argparse
from config import load_config
from utils import load_data, train_model
def main():
parser = argparse.ArgumentParser(description="MLCommons Training")
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the configuration file')
args = parser.parse_args()
config = load_config(args.config)
data = load_data(config['data_path'])
model = train_model(data, config['model_params'])
# 其他逻辑...
if __name__ == "__main__":
main()
启动文件功能介绍
- 参数解析: 使用
argparse
模块解析命令行参数,特别是配置文件的路径。 - 配置加载: 调用
config.py
中的load_config
函数加载配置文件。 - 数据加载: 调用
utils.py
中的load_data
函数加载训练数据。 - 模型训练: 调用
utils.py
中的train_model
函数进行模型训练。
3. 项目的配置文件介绍
项目的配置文件是 src/config.py
,该文件负责加载和管理项目的配置参数。配置文件通常是一个 YAML 文件,包含数据路径、模型参数、训练参数等信息。
config.py
文件内容概览
import yaml
def load_config(config_path):
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
return config
# 其他配置相关的函数...
配置文件功能介绍
- 加载配置:
load_config
函数负责从指定的 YAML 文件中加载配置参数。 - 配置参数: 配置文件中包含数据路径、模型参数、训练参数等关键配置项。
示例配置文件 (config.yaml
)
data_path: 'data/train.csv'
model_params:
learning_rate: 0.001
batch_size: 32
epochs: 10
配置文件使用
在 main.py
中,通过 load_config
函数加载配置文件,并将其传递给其他模块使用。例如:
config = load_config('config.yaml')
data = load_data(config['data_path'])
model = train_model(data, config['model_params'])
通过这种方式,项目的配置可以灵活地调整,而不需要修改代码。
以上是 MLCommons 训练项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K