ChatGLM模型微调后输出路径问题分析与解决方案
问题现象
在使用datawhalechina/self-llm项目中的ChatGLM模型进行微调训练时,部分用户遇到了输出路径问题。根据示例文档,微调后的参数应当保存在模型输出路径文件夹下的checkpoint-1000文件夹中,但实际运行后,指定的输出目录中只生成了runs文件夹,而没有预期的checkpoints文件。
问题分析
这种现象通常与训练过程中的保存策略和路径配置有关。在深度学习模型训练中,checkpoint的生成和保存受到以下几个关键因素的影响:
-
保存策略(save_strategy):决定了模型在训练过程中何时保存检查点。默认配置可能与用户预期不符。
-
路径设置:相对路径和绝对路径的处理方式不同,可能导致保存位置不符合预期。
-
训练进度:如果训练没有完成足够的steps,可能尚未触发保存检查点的条件。
解决方案
方案一:调整保存策略
修改训练脚本中的save_strategy参数,可以更频繁地保存检查点。例如:
training_args = TrainingArguments(
output_dir="./output",
save_strategy="steps", # 改为按steps保存
save_steps=10, # 每10个steps保存一次
# 其他参数...
)
这种配置可以确保训练过程中定期生成检查点,便于及时发现保存问题。
方案二:使用绝对路径
将输出目录改为绝对路径,避免相对路径可能带来的歧义:
training_args = TrainingArguments(
output_dir="/home/user/project/output", # 使用完整路径
# 其他参数...
)
方案三:检查训练进度
确认训练是否完成了足够的steps。如果设置的save_steps较大而训练提前终止,可能导致没有生成任何检查点。
深入理解
在Hugging Face Transformers框架中,模型检查点的保存行为由TrainingArguments类控制。关键参数包括:
output_dir:指定所有输出文件的基本目录save_strategy:可以是"steps"或"epoch",决定保存频率的依据save_steps:当strategy为"steps"时,指定保存间隔save_total_limit:限制保存的检查点总数,超出时会删除旧的
理解这些参数的交互关系,有助于更好地控制模型训练过程中的检查点生成。
最佳实践建议
-
明确保存策略:根据训练时长和数据规模,合理设置保存频率。对于长时间训练,可以设置较大的save_steps;短时间训练则应该设置较小的值。
-
监控训练过程:使用TensorBoard或类似的工具监控训练进度,确保保存行为符合预期。
-
路径规范化:尽量使用绝对路径,并在代码开始处验证路径是否存在、是否可写。
-
资源管理:注意
save_total_limit的设置,避免存储空间被大量检查点占满。
通过合理配置这些参数,可以确保模型训练过程中的检查点按预期保存,便于后续的分析和部署。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00