ChatGLM模型微调后输出路径问题分析与解决方案
问题现象
在使用datawhalechina/self-llm项目中的ChatGLM模型进行微调训练时,部分用户遇到了输出路径问题。根据示例文档,微调后的参数应当保存在模型输出路径文件夹下的checkpoint-1000文件夹中,但实际运行后,指定的输出目录中只生成了runs文件夹,而没有预期的checkpoints文件。
问题分析
这种现象通常与训练过程中的保存策略和路径配置有关。在深度学习模型训练中,checkpoint的生成和保存受到以下几个关键因素的影响:
-
保存策略(save_strategy):决定了模型在训练过程中何时保存检查点。默认配置可能与用户预期不符。
-
路径设置:相对路径和绝对路径的处理方式不同,可能导致保存位置不符合预期。
-
训练进度:如果训练没有完成足够的steps,可能尚未触发保存检查点的条件。
解决方案
方案一:调整保存策略
修改训练脚本中的save_strategy
参数,可以更频繁地保存检查点。例如:
training_args = TrainingArguments(
output_dir="./output",
save_strategy="steps", # 改为按steps保存
save_steps=10, # 每10个steps保存一次
# 其他参数...
)
这种配置可以确保训练过程中定期生成检查点,便于及时发现保存问题。
方案二:使用绝对路径
将输出目录改为绝对路径,避免相对路径可能带来的歧义:
training_args = TrainingArguments(
output_dir="/home/user/project/output", # 使用完整路径
# 其他参数...
)
方案三:检查训练进度
确认训练是否完成了足够的steps。如果设置的save_steps
较大而训练提前终止,可能导致没有生成任何检查点。
深入理解
在Hugging Face Transformers框架中,模型检查点的保存行为由TrainingArguments
类控制。关键参数包括:
output_dir
:指定所有输出文件的基本目录save_strategy
:可以是"steps"或"epoch",决定保存频率的依据save_steps
:当strategy为"steps"时,指定保存间隔save_total_limit
:限制保存的检查点总数,超出时会删除旧的
理解这些参数的交互关系,有助于更好地控制模型训练过程中的检查点生成。
最佳实践建议
-
明确保存策略:根据训练时长和数据规模,合理设置保存频率。对于长时间训练,可以设置较大的save_steps;短时间训练则应该设置较小的值。
-
监控训练过程:使用TensorBoard或类似的工具监控训练进度,确保保存行为符合预期。
-
路径规范化:尽量使用绝对路径,并在代码开始处验证路径是否存在、是否可写。
-
资源管理:注意
save_total_limit
的设置,避免存储空间被大量检查点占满。
通过合理配置这些参数,可以确保模型训练过程中的检查点按预期保存,便于后续的分析和部署。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









