ChatGLM模型微调后输出路径问题分析与解决方案
问题现象
在使用datawhalechina/self-llm项目中的ChatGLM模型进行微调训练时,部分用户遇到了输出路径问题。根据示例文档,微调后的参数应当保存在模型输出路径文件夹下的checkpoint-1000文件夹中,但实际运行后,指定的输出目录中只生成了runs文件夹,而没有预期的checkpoints文件。
问题分析
这种现象通常与训练过程中的保存策略和路径配置有关。在深度学习模型训练中,checkpoint的生成和保存受到以下几个关键因素的影响:
-
保存策略(save_strategy):决定了模型在训练过程中何时保存检查点。默认配置可能与用户预期不符。
-
路径设置:相对路径和绝对路径的处理方式不同,可能导致保存位置不符合预期。
-
训练进度:如果训练没有完成足够的steps,可能尚未触发保存检查点的条件。
解决方案
方案一:调整保存策略
修改训练脚本中的save_strategy参数,可以更频繁地保存检查点。例如:
training_args = TrainingArguments(
output_dir="./output",
save_strategy="steps", # 改为按steps保存
save_steps=10, # 每10个steps保存一次
# 其他参数...
)
这种配置可以确保训练过程中定期生成检查点,便于及时发现保存问题。
方案二:使用绝对路径
将输出目录改为绝对路径,避免相对路径可能带来的歧义:
training_args = TrainingArguments(
output_dir="/home/user/project/output", # 使用完整路径
# 其他参数...
)
方案三:检查训练进度
确认训练是否完成了足够的steps。如果设置的save_steps较大而训练提前终止,可能导致没有生成任何检查点。
深入理解
在Hugging Face Transformers框架中,模型检查点的保存行为由TrainingArguments类控制。关键参数包括:
output_dir:指定所有输出文件的基本目录save_strategy:可以是"steps"或"epoch",决定保存频率的依据save_steps:当strategy为"steps"时,指定保存间隔save_total_limit:限制保存的检查点总数,超出时会删除旧的
理解这些参数的交互关系,有助于更好地控制模型训练过程中的检查点生成。
最佳实践建议
-
明确保存策略:根据训练时长和数据规模,合理设置保存频率。对于长时间训练,可以设置较大的save_steps;短时间训练则应该设置较小的值。
-
监控训练过程:使用TensorBoard或类似的工具监控训练进度,确保保存行为符合预期。
-
路径规范化:尽量使用绝对路径,并在代码开始处验证路径是否存在、是否可写。
-
资源管理:注意
save_total_limit的设置,避免存储空间被大量检查点占满。
通过合理配置这些参数,可以确保模型训练过程中的检查点按预期保存,便于后续的分析和部署。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00