ChatGLM模型微调后输出路径问题分析与解决方案
问题现象
在使用datawhalechina/self-llm项目中的ChatGLM模型进行微调训练时,部分用户遇到了输出路径问题。根据示例文档,微调后的参数应当保存在模型输出路径文件夹下的checkpoint-1000文件夹中,但实际运行后,指定的输出目录中只生成了runs文件夹,而没有预期的checkpoints文件。
问题分析
这种现象通常与训练过程中的保存策略和路径配置有关。在深度学习模型训练中,checkpoint的生成和保存受到以下几个关键因素的影响:
-
保存策略(save_strategy):决定了模型在训练过程中何时保存检查点。默认配置可能与用户预期不符。
-
路径设置:相对路径和绝对路径的处理方式不同,可能导致保存位置不符合预期。
-
训练进度:如果训练没有完成足够的steps,可能尚未触发保存检查点的条件。
解决方案
方案一:调整保存策略
修改训练脚本中的save_strategy参数,可以更频繁地保存检查点。例如:
training_args = TrainingArguments(
output_dir="./output",
save_strategy="steps", # 改为按steps保存
save_steps=10, # 每10个steps保存一次
# 其他参数...
)
这种配置可以确保训练过程中定期生成检查点,便于及时发现保存问题。
方案二:使用绝对路径
将输出目录改为绝对路径,避免相对路径可能带来的歧义:
training_args = TrainingArguments(
output_dir="/home/user/project/output", # 使用完整路径
# 其他参数...
)
方案三:检查训练进度
确认训练是否完成了足够的steps。如果设置的save_steps较大而训练提前终止,可能导致没有生成任何检查点。
深入理解
在Hugging Face Transformers框架中,模型检查点的保存行为由TrainingArguments类控制。关键参数包括:
output_dir:指定所有输出文件的基本目录save_strategy:可以是"steps"或"epoch",决定保存频率的依据save_steps:当strategy为"steps"时,指定保存间隔save_total_limit:限制保存的检查点总数,超出时会删除旧的
理解这些参数的交互关系,有助于更好地控制模型训练过程中的检查点生成。
最佳实践建议
-
明确保存策略:根据训练时长和数据规模,合理设置保存频率。对于长时间训练,可以设置较大的save_steps;短时间训练则应该设置较小的值。
-
监控训练过程:使用TensorBoard或类似的工具监控训练进度,确保保存行为符合预期。
-
路径规范化:尽量使用绝对路径,并在代码开始处验证路径是否存在、是否可写。
-
资源管理:注意
save_total_limit的设置,避免存储空间被大量检查点占满。
通过合理配置这些参数,可以确保模型训练过程中的检查点按预期保存,便于后续的分析和部署。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00