GPT-GNN 开源项目教程
2024-08-17 15:07:41作者:魏献源Searcher
项目概述
GPT-GNN(Generative Pre-Training of Graph Neural Networks)是基于GitHub的开源项目,地址为 https://github.com/acbull/GPT-GNN.git,该项目由Ziniu Hu等人开发,首次发表于KDD 2020,旨在通过自监督学习在无标签数据上预训练图神经网络模型,从而减少对大量标注数据的依赖。本教程将详细介绍其目录结构、启动文件以及配置文件,帮助开发者快速理解并使用GPT-GNN。
1. 项目目录结构及介绍
GPT-GNN的项目目录结构如下所示:
GPT-GNN/
│
├── README.md - 项目主说明文件,包含基本介绍和快速入门指南。
├── src/ - 源代码目录,核心算法实现所在。
│ ├── models/ - 图神经网络模型相关代码。
│ ├── utils/ - 辅助函数集合,如数据处理、模型评估等。
│ └── ... - 其他源码子目录。
├── data/ - 示例数据或者数据预处理脚本存放位置。
├── config.py - 配置文件,定义默认参数设置。
├── train.py - 训练脚本,用于启动模型训练。
├── evaluate.py - 评估脚本,用于测试模型性能。
└── requirements.txt - 项目依赖库列表,用于环境搭建。
2. 项目的启动文件介绍
train.py
此文件为核心训练脚本,执行该脚本将启动GPT-GNN的训练流程。开发者需在此配置好相应的数据集路径、模型参数以及训练选项。基础用法通常包括指定配置文件或直接修改脚本内的参数值来适应特定任务需求。
evaluate.py
用于模型评估,它根据训练好的模型对数据进行预测,并计算相关的评估指标,如准确率、AUC等。同样地,使用者可能需要根据实际情况调整数据集路径和模型加载路径。
3. 项目的配置文件介绍
config.py
配置文件中定义了模型训练和评估过程中的各种参数,这些参数涵盖了学习率、批次大小、模型架构细节、训练轮数等关键设置。理解并适当调整这些配置对于优化模型性能至关重要。例如,包含以下典型字段:
{
"learning_rate": 0.001,
"epochs": 100,
"batch_size": 32,
"model_params": {
// 相关模型特有参数...
},
"data_path": "path/to/your/data",
// 更多配置项...
}
开发者应该根据自己的实验需求和硬件条件调整上述配置。此外,项目可能会支持命令行参数以覆盖配置文件中的默认设置,提供更高的灵活性。
以上就是关于GPT-GNN项目的基本教程概览,深入学习和实践时建议详细阅读官方文档和源码注释,以获得更全面的理解和应用能力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1