nanoVLM项目训练中NaN损失问题的分析与解决方案
2025-07-01 10:17:10作者:殷蕙予
在基于nanoVLM项目进行多模态模型训练时,研究人员可能会遇到训练损失出现NaN值的问题。本文将以SmolLM2-360M模型在DocVQA数据集上的表现为例,深入分析这一问题的成因并提供有效的解决方案。
问题现象
当使用HuggingFaceTB/SmolLM2-360M模型在DocVQA数据集上进行微调训练时,训练过程中会出现损失值变为NaN的情况。这一现象在Colab环境中尤为常见,表现为训练日志中持续输出"Train Loss: nan"的记录。
值得注意的是,相同配置下使用较小规模的SmolLM2-135M模型却能正常训练,这表明问题可能与模型规模或参数设置有关。
根本原因分析
经过技术团队深入排查,发现导致NaN损失的主要原因是数值精度问题。具体来说:
- 混合精度训练中使用了float16数据类型,这在处理某些数值范围时容易出现下溢或上溢
- 较大规模的模型(如360M参数)对数值精度更为敏感,更容易出现数值不稳定问题
- 长序列输入(如DocVQA中的文档问答数据)会放大数值精度问题
解决方案
针对这一问题,我们推荐以下两种解决方案:
方案一:使用bfloat16数据类型
将混合精度训练的数据类型从float16改为bfloat16:
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
# 训练代码
bfloat16相比float16具有更宽的动态范围,能有效防止训练过程中的数值溢出问题。但需注意:
- 需要支持bfloat16的硬件(如A100、3090等较新GPU)
- 免费版Colab的T4 GPU不支持bfloat16
方案二:使用float32全精度训练
如果硬件不支持bfloat16,可以回退到float32全精度训练:
- 移除torch.autocast上下文管理器
- 适当减小batch_size以控制内存使用(如从12减至6)
虽然这会增加显存消耗和训练时间,但能保证数值稳定性。
最佳实践建议
- 对于大型模型训练,优先考虑使用bfloat16精度
- 监控训练过程中的损失值变化,及时发现数值不稳定问题
- 根据硬件条件合理调整batch_size和训练精度
- 对于长序列任务,适当增加max_length参数
通过合理配置训练精度,可以有效解决nanoVLM项目中遇到的NaN损失问题,确保模型训练的稳定性和收敛性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134