PyKAN项目中训练后出现NaN问题的分析与解决方案
2025-05-14 18:34:54作者:郜逊炳
在PyKAN项目使用过程中,用户可能会遇到一个典型问题:在完成自动符号回归(auto_symbolic)后重新训练模型时出现NaN值。这种现象通常伴随着训练损失、测试损失和正则化项都变为NaN,最终导致训练过程中断。
问题现象分析
当用户使用PyKAN构建包含19个输入、5个隐藏神经元和1个输出的模型时,经过多轮网格细化训练后,可能会观察到以下典型现象:
- 训练过程中损失值逐渐下降但效果不理想
- 执行auto_symbolic操作后,所有节点都被"固定"为特定函数形式
- 重新训练时立即出现NaN值
- 最终抛出DGELSY参数错误和非法值异常
根本原因
这个问题主要源于两个方面:
-
符号函数的数学特性:某些被自动选择的符号函数(如log、sqrt等)在输入值不满足定义域时会产生未定义行为。例如,对数函数在输入≤0时会返回NaN。
-
数值稳定性问题:在训练过程中,特别是使用LBFGS优化器时,某些参数组合可能导致数值溢出或非法运算,进而产生NaN。
解决方案
针对这一问题,我们提供以下几种解决方案:
1. 优化器切换
将优化器从LBFGS切换为Adam通常能显著改善数值稳定性:
model.train(dataset, opt="Adam", steps=50)
2. 符号函数审查与替换
对于可能导致问题的符号函数进行手动审查和替换:
# 检查建议的函数形式
suggestions = model.suggest_symbolic(0,0,1)
# 选择更稳定的函数形式进行替换
model.fix_symbolic(0,0,1,'x^2')
3. 限制符号函数库
在自动符号回归前限制可选的函数类型:
lib = ['sin', 'x^2', 'exp', 'tanh'] # 排除可能导致问题的函数
model.auto_symbolic(lib=lib)
4. 训练参数调整
适当调整训练参数,如:
- 减小学习率
- 增加正则化强度
- 使用更小的批处理大小
最佳实践建议
-
监控训练过程:始终关注训练过程中的损失值和正则化项变化趋势。
-
渐进式训练:从简单模型开始,逐步增加复杂度,而不是一开始就使用复杂结构。
-
函数选择策略:优先选择定义域广泛、数值稳定的函数形式。
-
异常处理:在训练循环中加入NaN检查,发现异常时能够及时中断并调整参数。
通过理解这些问题的根源并应用适当的解决方案,用户可以更有效地使用PyKAN构建稳定可靠的模型,充分发挥其自动符号回归的优势。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217