PyKAN项目中训练后出现NaN问题的分析与解决方案
2025-05-14 16:30:11作者:郜逊炳
在PyKAN项目使用过程中,用户可能会遇到一个典型问题:在完成自动符号回归(auto_symbolic)后重新训练模型时出现NaN值。这种现象通常伴随着训练损失、测试损失和正则化项都变为NaN,最终导致训练过程中断。
问题现象分析
当用户使用PyKAN构建包含19个输入、5个隐藏神经元和1个输出的模型时,经过多轮网格细化训练后,可能会观察到以下典型现象:
- 训练过程中损失值逐渐下降但效果不理想
- 执行auto_symbolic操作后,所有节点都被"固定"为特定函数形式
- 重新训练时立即出现NaN值
- 最终抛出DGELSY参数错误和非法值异常
根本原因
这个问题主要源于两个方面:
-
符号函数的数学特性:某些被自动选择的符号函数(如log、sqrt等)在输入值不满足定义域时会产生未定义行为。例如,对数函数在输入≤0时会返回NaN。
-
数值稳定性问题:在训练过程中,特别是使用LBFGS优化器时,某些参数组合可能导致数值溢出或非法运算,进而产生NaN。
解决方案
针对这一问题,我们提供以下几种解决方案:
1. 优化器切换
将优化器从LBFGS切换为Adam通常能显著改善数值稳定性:
model.train(dataset, opt="Adam", steps=50)
2. 符号函数审查与替换
对于可能导致问题的符号函数进行手动审查和替换:
# 检查建议的函数形式
suggestions = model.suggest_symbolic(0,0,1)
# 选择更稳定的函数形式进行替换
model.fix_symbolic(0,0,1,'x^2')
3. 限制符号函数库
在自动符号回归前限制可选的函数类型:
lib = ['sin', 'x^2', 'exp', 'tanh'] # 排除可能导致问题的函数
model.auto_symbolic(lib=lib)
4. 训练参数调整
适当调整训练参数,如:
- 减小学习率
- 增加正则化强度
- 使用更小的批处理大小
最佳实践建议
-
监控训练过程:始终关注训练过程中的损失值和正则化项变化趋势。
-
渐进式训练:从简单模型开始,逐步增加复杂度,而不是一开始就使用复杂结构。
-
函数选择策略:优先选择定义域广泛、数值稳定的函数形式。
-
异常处理:在训练循环中加入NaN检查,发现异常时能够及时中断并调整参数。
通过理解这些问题的根源并应用适当的解决方案,用户可以更有效地使用PyKAN构建稳定可靠的模型,充分发挥其自动符号回归的优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178