PyKAN项目中训练后出现NaN问题的分析与解决方案
2025-05-14 06:00:28作者:郜逊炳
在PyKAN项目使用过程中,用户可能会遇到一个典型问题:在完成自动符号回归(auto_symbolic)后重新训练模型时出现NaN值。这种现象通常伴随着训练损失、测试损失和正则化项都变为NaN,最终导致训练过程中断。
问题现象分析
当用户使用PyKAN构建包含19个输入、5个隐藏神经元和1个输出的模型时,经过多轮网格细化训练后,可能会观察到以下典型现象:
- 训练过程中损失值逐渐下降但效果不理想
- 执行auto_symbolic操作后,所有节点都被"固定"为特定函数形式
- 重新训练时立即出现NaN值
- 最终抛出DGELSY参数错误和非法值异常
根本原因
这个问题主要源于两个方面:
-
符号函数的数学特性:某些被自动选择的符号函数(如log、sqrt等)在输入值不满足定义域时会产生未定义行为。例如,对数函数在输入≤0时会返回NaN。
-
数值稳定性问题:在训练过程中,特别是使用LBFGS优化器时,某些参数组合可能导致数值溢出或非法运算,进而产生NaN。
解决方案
针对这一问题,我们提供以下几种解决方案:
1. 优化器切换
将优化器从LBFGS切换为Adam通常能显著改善数值稳定性:
model.train(dataset, opt="Adam", steps=50)
2. 符号函数审查与替换
对于可能导致问题的符号函数进行手动审查和替换:
# 检查建议的函数形式
suggestions = model.suggest_symbolic(0,0,1)
# 选择更稳定的函数形式进行替换
model.fix_symbolic(0,0,1,'x^2')
3. 限制符号函数库
在自动符号回归前限制可选的函数类型:
lib = ['sin', 'x^2', 'exp', 'tanh'] # 排除可能导致问题的函数
model.auto_symbolic(lib=lib)
4. 训练参数调整
适当调整训练参数,如:
- 减小学习率
- 增加正则化强度
- 使用更小的批处理大小
最佳实践建议
-
监控训练过程:始终关注训练过程中的损失值和正则化项变化趋势。
-
渐进式训练:从简单模型开始,逐步增加复杂度,而不是一开始就使用复杂结构。
-
函数选择策略:优先选择定义域广泛、数值稳定的函数形式。
-
异常处理:在训练循环中加入NaN检查,发现异常时能够及时中断并调整参数。
通过理解这些问题的根源并应用适当的解决方案,用户可以更有效地使用PyKAN构建稳定可靠的模型,充分发挥其自动符号回归的优势。
登录后查看全文
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
XXMI-Launcher v1.8.4版本技术解析与优化改进 Wundergraph Cosmo控制平面0.122.0版本技术解析 在go-binance中实现衍生品OTOCO订单的策略 Git-Commit-ID-Maven-Plugin 8.0.0+版本在多模块项目中生成空git.properties文件问题分析 Mixpost项目中Mastodon关注者导入失败问题分析与解决方案 OP-TEE项目中TEE_AllocateOperation内存分配错误分析与解决方案 OpenAI-Go JSON 编码器字符转义问题解析 SD WebUI Regional Prompter 扩展在ReForge中的字符限制问题分析与解决方案 ScoopInstaller/Main项目中MySQL更新失败的排查与解决 解决Dj-Stripe迁移时出现的PostgreSQL类型不匹配问题
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
1 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
503
397

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
114
199

openGauss kernel ~ openGauss is an open source relational database management system
C++
61
144

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
97
251

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
342

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
581
41

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
377
37

扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
21
2