Azure Kubernetes Metrics Adapter 使用教程
1. 项目介绍
Azure Kubernetes Metrics Adapter 是一个用于 Azure 服务的 Kubernetes 自定义指标 API 和外部指标 API 的实现。该适配器允许你使用 Azure 资源(如 Service Bus 队列)和存储在 Application Insights 中的自定义指标,通过 Kubernetes 的水平 Pod 自动扩展器(HPA)来扩展应用程序部署的 Pod。
主要功能
- 自定义指标 API:支持从 Application Insights 获取自定义指标。
- 外部指标 API:支持从 Azure 资源(如 Service Bus 队列)获取外部指标。
- 水平 Pod 自动扩展:通过 HPA 根据获取的指标自动扩展 Pod。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下工具:
- Kubernetes 集群
- Helm
- Azure CLI
2.2 安装步骤
2.2.1 克隆项目仓库
git clone https://github.com/Azure/azure-k8s-metrics-adapter.git
cd azure-k8s-metrics-adapter
2.2.2 创建命名空间
kubectl create namespace custom-metrics
2.2.3 安装 Helm Chart
helm install --name my-release charts/azure-k8s-metrics-adapter --namespace custom-metrics
2.2.4 创建服务主体和密钥
az ad sp create-for-rbac -n "azure-k8s-metric-adapter-sp" --role "Monitoring Reader" --scopes /subscriptions/[SubID]/resourceGroups/[ResourceGroup1]
使用创建的服务主体信息创建 Kubernetes 密钥:
kubectl create secret generic azure-k8s-metrics-adapter -n custom-metrics \
--from-literal=azure-tenant-id=<tenantid> \
--from-literal=azure-client-id=<clientid> \
--from-literal=azure-client-secret=<secret>
2.2.5 部署适配器
kubectl apply -f https://raw.githubusercontent.com/Azure/azure-k8s-metrics-adapter/master/deploy/adapter.yaml
2.2.6 部署指标配置
kubectl apply -f https://raw.githubusercontent.com/Azure/azure-k8s-metrics-adapter/master/samples/resources/externalmetric-example.yaml
2.2.7 部署 HPA
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: consumer-scaler
spec:
scaleTargetRef:
apiVersion: extensions/v1beta1
kind: Deployment
name: consumer
minReplicas: 1
maxReplicas: 10
metrics:
- type: External
external:
metricName: queuemessages
targetValue: 30
3. 应用案例和最佳实践
3.1 使用 Service Bus 队列进行自动扩展
通过 Azure Service Bus 队列的消息数量来触发 Pod 的自动扩展。配置 HPA 时,指定 queuemessages 作为外部指标,并设置目标值。
3.2 使用 Application Insights 进行自动扩展
通过 Application Insights 中的自定义指标(如每秒请求数)来触发 Pod 的自动扩展。配置 HPA 时,指定自定义指标名称,并设置目标值。
4. 典型生态项目
4.1 Azure Kubernetes Service (AKS)
Azure Kubernetes Metrics Adapter 主要用于 AKS 集群中,通过 Azure 资源和自定义指标来实现 Pod 的自动扩展。
4.2 Application Insights
Application Insights 用于收集和分析应用程序的性能指标,Azure Kubernetes Metrics Adapter 可以从 Application Insights 中获取自定义指标,用于自动扩展。
4.3 Azure Monitor
Azure Monitor 提供对 Azure 资源的监控和警报功能,Azure Kubernetes Metrics Adapter 可以从 Azure Monitor 中获取外部指标,用于自动扩展。
通过以上步骤和案例,你可以快速上手并使用 Azure Kubernetes Metrics Adapter 来实现 Kubernetes 集群中 Pod 的自动扩展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00