Azure Kubernetes Metrics Adapter 使用教程
1. 项目介绍
Azure Kubernetes Metrics Adapter 是一个用于 Azure 服务的 Kubernetes 自定义指标 API 和外部指标 API 的实现。该适配器允许你使用 Azure 资源(如 Service Bus 队列)和存储在 Application Insights 中的自定义指标,通过 Kubernetes 的水平 Pod 自动扩展器(HPA)来扩展应用程序部署的 Pod。
主要功能
- 自定义指标 API:支持从 Application Insights 获取自定义指标。
- 外部指标 API:支持从 Azure 资源(如 Service Bus 队列)获取外部指标。
- 水平 Pod 自动扩展:通过 HPA 根据获取的指标自动扩展 Pod。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下工具:
- Kubernetes 集群
- Helm
- Azure CLI
2.2 安装步骤
2.2.1 克隆项目仓库
git clone https://github.com/Azure/azure-k8s-metrics-adapter.git
cd azure-k8s-metrics-adapter
2.2.2 创建命名空间
kubectl create namespace custom-metrics
2.2.3 安装 Helm Chart
helm install --name my-release charts/azure-k8s-metrics-adapter --namespace custom-metrics
2.2.4 创建服务主体和密钥
az ad sp create-for-rbac -n "azure-k8s-metric-adapter-sp" --role "Monitoring Reader" --scopes /subscriptions/[SubID]/resourceGroups/[ResourceGroup1]
使用创建的服务主体信息创建 Kubernetes 密钥:
kubectl create secret generic azure-k8s-metrics-adapter -n custom-metrics \
--from-literal=azure-tenant-id=<tenantid> \
--from-literal=azure-client-id=<clientid> \
--from-literal=azure-client-secret=<secret>
2.2.5 部署适配器
kubectl apply -f https://raw.githubusercontent.com/Azure/azure-k8s-metrics-adapter/master/deploy/adapter.yaml
2.2.6 部署指标配置
kubectl apply -f https://raw.githubusercontent.com/Azure/azure-k8s-metrics-adapter/master/samples/resources/externalmetric-example.yaml
2.2.7 部署 HPA
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: consumer-scaler
spec:
scaleTargetRef:
apiVersion: extensions/v1beta1
kind: Deployment
name: consumer
minReplicas: 1
maxReplicas: 10
metrics:
- type: External
external:
metricName: queuemessages
targetValue: 30
3. 应用案例和最佳实践
3.1 使用 Service Bus 队列进行自动扩展
通过 Azure Service Bus 队列的消息数量来触发 Pod 的自动扩展。配置 HPA 时,指定 queuemessages 作为外部指标,并设置目标值。
3.2 使用 Application Insights 进行自动扩展
通过 Application Insights 中的自定义指标(如每秒请求数)来触发 Pod 的自动扩展。配置 HPA 时,指定自定义指标名称,并设置目标值。
4. 典型生态项目
4.1 Azure Kubernetes Service (AKS)
Azure Kubernetes Metrics Adapter 主要用于 AKS 集群中,通过 Azure 资源和自定义指标来实现 Pod 的自动扩展。
4.2 Application Insights
Application Insights 用于收集和分析应用程序的性能指标,Azure Kubernetes Metrics Adapter 可以从 Application Insights 中获取自定义指标,用于自动扩展。
4.3 Azure Monitor
Azure Monitor 提供对 Azure 资源的监控和警报功能,Azure Kubernetes Metrics Adapter 可以从 Azure Monitor 中获取外部指标,用于自动扩展。
通过以上步骤和案例,你可以快速上手并使用 Azure Kubernetes Metrics Adapter 来实现 Kubernetes 集群中 Pod 的自动扩展。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00