LLMLingua项目中的对话压缩技术实践与优化策略
2025-06-09 14:23:25作者:郜逊炳
在自然语言处理领域,对话系统的上下文管理一直是个重要课题。微软开源的LLMLingua项目提供了一种创新的提示词压缩技术,能够有效处理长对话场景下的上下文冗余问题。本文将从技术实现角度深入探讨如何优化对话压缩效果。
对话压缩的核心挑战
实际应用中发现,直接压缩对话文本时容易出现三个典型问题:
- 压缩后输出结果与原始提示差异显著
- 压缩文本存在语义断裂现象
- 关键对话角色标识(如"Agent:"、"Customer:")意外丢失
这些问题源于对话数据的特殊结构特性。与普通文本不同,对话具有交替发言的段落式结构,且角色标识对理解对话脉络至关重要。
技术实现优化方案
结构化输入处理
原始方案直接将整个对话作为字符串输入,这会损失对话的段落结构信息。改进方案建议:
- 按发言轮次分割对话文本
- 将分割后的对话段落作为列表输入
- 保留段落间的换行分隔符
这种结构化处理能激活系统的粗粒度压缩机制,首先在段落级别过滤无关内容。
关键信息保留技术
针对角色标识丢失问题,可采用两阶段处理:
- 预处理阶段:用正则表达式提取并临时移除角色标识
- 后处理阶段:基于保留的分隔符重建对话结构
- 最终将角色标识重新插入压缩后的文本
应用场景适配策略
不同对话任务需要采用不同的压缩策略:
- 问答型任务(如客服咨询记录处理):
- 适合使用基于检索的压缩方案
- 系统能准确定位包含答案的文本片段
- 综合分析型任务(如客户反馈评估):
- 需要全局信息聚合
- 应采用粗粒度到细粒度的分层压缩
- 先保留相关对话段落,再进行细粒度压缩
实践建议
- 对于多轮对话场景,建议压缩比设置在0.15-0.3之间
- 重要术语可通过特殊标记进行保护
- 长对话建议分块处理,每块保持合理的上下文窗口
- 输出结果建议进行后处理校验
LLMLingua的压缩技术为对话系统提供了高效的上下文管理方案,通过合理的结构调整和参数优化,可以在保持语义完整性的同时显著提升处理效率。未来随着角色标识保护等功能的加入,其应用效果将进一步提升。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
412
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146