LMDeploy部署Qwen2-VL模型时遇到Half类型溢出问题的分析与解决
2025-06-03 17:08:21作者:宣聪麟
问题背景
在使用LMDeploy工具部署Qwen2-VL-7B-Instruct模型进行批量推理时,开发者遇到了一个关于Half类型溢出的运行时错误。该问题发生在长时间运行模型进行多次批量生成后,错误信息指向了transformers库中Deberta模型的实现部分。
错误现象
核心错误表现为:
RuntimeError: value cannot be converted to type at::Half without overflow
错误发生在transformers库的modeling_deberta.py文件中,具体位置是在计算attention_scores时尝试使用masked_fill操作。系统试图将一个值转换为Half精度浮点数时发生了溢出。
问题分析
-
精度问题根源:
- Half精度(16位浮点)的表示范围有限,当尝试填充极小的负值(如用于注意力掩码的负无穷)时,可能会超出Half类型能表示的范围
- 在Deberta模型的注意力机制实现中,使用
torch.finfo(query_layer.dtype).min获取最小值,当query_layer是Half类型时,这个最小值可能无法被正确表示
-
环境因素:
- 模型部署在4块A100 GPU上
- 使用了Turbomind引擎配置,设置了较大的session长度(8192*4)和tensor并行(tp=4)
- 错误发生在长时间运行后的批量生成过程中
-
相关警告:
- 系统还报告了tokenizers并行相关的警告,提示在fork进程后使用并行可能导致死锁
解决方案
-
设置环境变量: 在运行前设置环境变量可以避免tokenizers并行问题:
export TOKENIZERS_PARALLELISM=false -
精度处理建议:
- 检查模型是否真的需要使用Half精度,考虑使用Float32精度运行
- 如果必须使用Half精度,可以修改attention mask的填充值,使用一个较大的负值而非最小值
- 在模型调用前显式设置精度:
torch.set_default_dtype(torch.float32)
-
LMDeploy配置调整:
- 检查TurbomindEngineConfig的配置参数,特别是与精度相关的设置
- 考虑减少batch size或session length,降低内存压力
预防措施
-
精度监控:
- 在长时间运行的推理任务中,添加对中间结果数值范围的监控
- 使用
torch.finfo(torch.float16).min检查Half类型的最小可表示值
-
错误处理:
- 在关键计算步骤周围添加try-catch块,捕获精度溢出错误
- 实现自动回退机制,当Half精度失败时自动切换到Float32
-
资源管理:
- 定期清理GPU缓存,防止内存碎片积累
- 监控GPU显存使用情况,避免长时间运行后的资源耗尽
总结
在使用LMDeploy部署大模型时,精度问题是一个需要特别注意的方面。特别是当模型需要长时间运行处理大量数据时,数值稳定性变得尤为重要。通过合理配置环境参数、选择合适的计算精度以及实施有效的监控措施,可以显著提高模型部署的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130