LMDeploy部署Qwen2-VL模型时遇到Half类型溢出问题的分析与解决
2025-06-03 17:08:21作者:宣聪麟
问题背景
在使用LMDeploy工具部署Qwen2-VL-7B-Instruct模型进行批量推理时,开发者遇到了一个关于Half类型溢出的运行时错误。该问题发生在长时间运行模型进行多次批量生成后,错误信息指向了transformers库中Deberta模型的实现部分。
错误现象
核心错误表现为:
RuntimeError: value cannot be converted to type at::Half without overflow
错误发生在transformers库的modeling_deberta.py文件中,具体位置是在计算attention_scores时尝试使用masked_fill操作。系统试图将一个值转换为Half精度浮点数时发生了溢出。
问题分析
-
精度问题根源:
- Half精度(16位浮点)的表示范围有限,当尝试填充极小的负值(如用于注意力掩码的负无穷)时,可能会超出Half类型能表示的范围
- 在Deberta模型的注意力机制实现中,使用
torch.finfo(query_layer.dtype).min获取最小值,当query_layer是Half类型时,这个最小值可能无法被正确表示
-
环境因素:
- 模型部署在4块A100 GPU上
- 使用了Turbomind引擎配置,设置了较大的session长度(8192*4)和tensor并行(tp=4)
- 错误发生在长时间运行后的批量生成过程中
-
相关警告:
- 系统还报告了tokenizers并行相关的警告,提示在fork进程后使用并行可能导致死锁
解决方案
-
设置环境变量: 在运行前设置环境变量可以避免tokenizers并行问题:
export TOKENIZERS_PARALLELISM=false -
精度处理建议:
- 检查模型是否真的需要使用Half精度,考虑使用Float32精度运行
- 如果必须使用Half精度,可以修改attention mask的填充值,使用一个较大的负值而非最小值
- 在模型调用前显式设置精度:
torch.set_default_dtype(torch.float32)
-
LMDeploy配置调整:
- 检查TurbomindEngineConfig的配置参数,特别是与精度相关的设置
- 考虑减少batch size或session length,降低内存压力
预防措施
-
精度监控:
- 在长时间运行的推理任务中,添加对中间结果数值范围的监控
- 使用
torch.finfo(torch.float16).min检查Half类型的最小可表示值
-
错误处理:
- 在关键计算步骤周围添加try-catch块,捕获精度溢出错误
- 实现自动回退机制,当Half精度失败时自动切换到Float32
-
资源管理:
- 定期清理GPU缓存,防止内存碎片积累
- 监控GPU显存使用情况,避免长时间运行后的资源耗尽
总结
在使用LMDeploy部署大模型时,精度问题是一个需要特别注意的方面。特别是当模型需要长时间运行处理大量数据时,数值稳定性变得尤为重要。通过合理配置环境参数、选择合适的计算精度以及实施有效的监控措施,可以显著提高模型部署的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896