从零实现神经网络:微分编程与线性回归基础
2025-07-04 15:09:43作者:何举烈Damon
本文基于深度学习工作坊项目中的微分编程内容,重点讲解如何从零开始实现神经网络的基础组件。我们将以线性回归作为切入点,逐步深入理解梯度优化、损失函数等核心概念,为后续构建更复杂的神经网络模型打下坚实基础。
环境准备与基础概念
在开始之前,我们需要配置好计算环境并理解几个关键概念:
%load_ext autoreload
%autoreload 2
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import jax.numpy as np
from jax import jit
import numpy.random as npr
import matplotlib.pyplot as plt
微分编程是现代深度学习框架的核心,它允许我们自动计算导数,这对于训练神经网络至关重要。线性回归作为最简单的模型,是理解这一机制的理想起点。
线性回归模型解析
模型方程
线性回归的基本方程为:
其中:
- 是输出变量(预测值)
- 是输入变量(特征)
- 是权重参数(斜率)
- 是偏置参数(截距)
我们的目标是找到最优的 和 值,使模型能最好地拟合观测数据。
数据生成与可视化
为了更好地理解,我们首先生成一些模拟数据:
# 真实参数值
w_true = 2.5 # 斜率
b_true = 1.0 # 截距
# 生成带噪声的线性数据
def make_y(x, w, b):
return w * x + b + np.random.normal(scale=0.5, size=x.shape)
x = np.linspace(0, 1, 50)
y = make_y(x, w_true, b_true)
# 可视化真实数据
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('模拟线性数据')
模型评估与损失函数
初始参数尝试
让我们尝试一组明显不合适的参数,观察模型表现:
w_bad = -5 # 错误斜率
b_bad = 3 # 错误截距
y_pred = w_bad * x + b_bad
plt.plot(x, y_pred, color='red', label='错误模型')
plt.scatter(x, y, label='真实数据')
plt.legend()
plt.title('错误参数下的模型表现')
均方误差(MSE)损失
为了量化模型的好坏,我们引入均方误差(Mean Squared Error)作为损失函数:
def mse(y_true, y_pred):
return np.mean((y_true - y_pred)**2)
print(f"错误模型的MSE: {mse(y, y_pred):.2f}")
MSE衡量了预测值与真实值之间的平均平方差异,值越小表示模型拟合越好。
手动参数优化
通过交互式可视化,我们可以直观地感受参数变化对模型的影响:
from ipywidgets import interact, FloatSlider
@interact(w=FloatSlider(value=0, min=-10, max=10),
b=FloatSlider(value=0, min=-10, max=30))
def plot_model(w, b):
y_pred = w * x + b
plt.scatter(x, y)
plt.plot(x, y_pred)
plt.title(f"MSE: {mse(y, y_pred):.2f}")
手动调整参数时,我们会发现:
- 当斜率接近真实值2.5时,MSE减小
- 当截距接近真实值1.0时,MSE进一步减小
- 最优参数组合使MSE达到最小值
自动优化原理
手动优化虽然直观,但不实用。自动优化依赖于梯度下降算法:
- 计算损失函数对参数的梯度
- 沿梯度反方向更新参数(因为我们要最小化损失)
- 重复上述步骤直到收敛
对于线性回归,梯度计算如下:
从线性回归到神经网络
理解线性回归的优化过程是掌握神经网络的基础,因为:
- 神经网络可以看作是多层线性变换与非线性的组合
- 训练过程同样使用梯度下降和反向传播
- 损失函数的选择取决于任务类型(回归/分类)
在后续内容中,我们将把这里的知识扩展到:
- 逻辑回归(分类问题)
- 多层感知机
- 更复杂的神经网络结构
通过这种从简单到复杂的渐进式学习,读者可以扎实掌握深度学习的核心原理,而不仅仅是框架的使用方法。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5