从零实现神经网络:微分编程与线性回归基础
2025-07-04 19:16:59作者:何举烈Damon
本文基于深度学习工作坊项目中的微分编程内容,重点讲解如何从零开始实现神经网络的基础组件。我们将以线性回归作为切入点,逐步深入理解梯度优化、损失函数等核心概念,为后续构建更复杂的神经网络模型打下坚实基础。
环境准备与基础概念
在开始之前,我们需要配置好计算环境并理解几个关键概念:
%load_ext autoreload
%autoreload 2
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import jax.numpy as np
from jax import jit
import numpy.random as npr
import matplotlib.pyplot as plt
微分编程是现代深度学习框架的核心,它允许我们自动计算导数,这对于训练神经网络至关重要。线性回归作为最简单的模型,是理解这一机制的理想起点。
线性回归模型解析
模型方程
线性回归的基本方程为:
其中:
- 是输出变量(预测值)
- 是输入变量(特征)
- 是权重参数(斜率)
- 是偏置参数(截距)
我们的目标是找到最优的 和 值,使模型能最好地拟合观测数据。
数据生成与可视化
为了更好地理解,我们首先生成一些模拟数据:
# 真实参数值
w_true = 2.5 # 斜率
b_true = 1.0 # 截距
# 生成带噪声的线性数据
def make_y(x, w, b):
return w * x + b + np.random.normal(scale=0.5, size=x.shape)
x = np.linspace(0, 1, 50)
y = make_y(x, w_true, b_true)
# 可视化真实数据
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('模拟线性数据')
模型评估与损失函数
初始参数尝试
让我们尝试一组明显不合适的参数,观察模型表现:
w_bad = -5 # 错误斜率
b_bad = 3 # 错误截距
y_pred = w_bad * x + b_bad
plt.plot(x, y_pred, color='red', label='错误模型')
plt.scatter(x, y, label='真实数据')
plt.legend()
plt.title('错误参数下的模型表现')
均方误差(MSE)损失
为了量化模型的好坏,我们引入均方误差(Mean Squared Error)作为损失函数:
def mse(y_true, y_pred):
return np.mean((y_true - y_pred)**2)
print(f"错误模型的MSE: {mse(y, y_pred):.2f}")
MSE衡量了预测值与真实值之间的平均平方差异,值越小表示模型拟合越好。
手动参数优化
通过交互式可视化,我们可以直观地感受参数变化对模型的影响:
from ipywidgets import interact, FloatSlider
@interact(w=FloatSlider(value=0, min=-10, max=10),
b=FloatSlider(value=0, min=-10, max=30))
def plot_model(w, b):
y_pred = w * x + b
plt.scatter(x, y)
plt.plot(x, y_pred)
plt.title(f"MSE: {mse(y, y_pred):.2f}")
手动调整参数时,我们会发现:
- 当斜率接近真实值2.5时,MSE减小
- 当截距接近真实值1.0时,MSE进一步减小
- 最优参数组合使MSE达到最小值
自动优化原理
手动优化虽然直观,但不实用。自动优化依赖于梯度下降算法:
- 计算损失函数对参数的梯度
- 沿梯度反方向更新参数(因为我们要最小化损失)
- 重复上述步骤直到收敛
对于线性回归,梯度计算如下:
从线性回归到神经网络
理解线性回归的优化过程是掌握神经网络的基础,因为:
- 神经网络可以看作是多层线性变换与非线性的组合
- 训练过程同样使用梯度下降和反向传播
- 损失函数的选择取决于任务类型(回归/分类)
在后续内容中,我们将把这里的知识扩展到:
- 逻辑回归(分类问题)
- 多层感知机
- 更复杂的神经网络结构
通过这种从简单到复杂的渐进式学习,读者可以扎实掌握深度学习的核心原理,而不仅仅是框架的使用方法。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
116
149
暂无简介
Dart
578
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
287
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.13 K