VLMEvalKit项目中InternVL-Chat-V1-5多GPU推理问题解析
2025-07-03 05:19:33作者:俞予舒Fleming
问题背景
在VLMEvalKit项目中使用InternVL-Chat-V1-5模型进行推理时,由于模型规模较大,需要至少两块GPU才能运行。然而在实际操作中,用户发现模型无法正确分配到多个GPU上运行,导致显存不足(OOM)的问题。
问题分析
InternVL-Chat-V1-5是一个大型视觉语言模型,其显存需求超过了单块普通GPU的容量。当尝试在多GPU环境下运行时,主要遇到了两个技术挑战:
- 模型加载问题:默认配置下模型无法自动分配到多个GPU
- 设备一致性错误:图像数据与模型参数不在同一设备上
解决方案
模型加载配置修改
原始代码中模型加载部分需要进行以下关键修改:
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=load_in_8bit,
device_map='auto' # 关键修改:启用自动设备映射
).eval()
需要特别注意:
- 移除原有的
.cuda()调用 - 确保不手动将模型移动到特定设备
图像数据处理
在多GPU环境下,需要确保输入图像数据与模型参数位于同一设备。修改图像加载代码:
pixel_values = load_image(image_path, max_num=self.max_num)
pixel_values = pixel_values.to(self.model.device) # 确保与模型同设备
pixel_values = pixel_values.to(torch.bfloat16)
技术要点
- 设备映射策略:
device_map='auto'允许HuggingFace的transformers自动将模型层分配到可用GPU上 - 数据类型优化:使用
torch.bfloat16可以减少显存占用同时保持足够的数值精度 - 设备一致性:所有张量必须位于同一设备上,否则会导致运行时错误
实践建议
- 对于24GB显存的GPU(如A40),建议使用两块或更多GPU运行InternVL-Chat-V1-5
- 监控GPU显存使用情况,确保分配均衡
- 如果遇到设备不匹配错误,检查所有张量的
.device属性 - 保持VLMEvalKit和InternVL相关代码库为最新版本
总结
多GPU环境下运行大型视觉语言模型需要特别注意设备分配和数据一致性。通过合理配置HuggingFace的自动设备映射功能,并确保输入数据与模型参数位于相同设备,可以有效解决InternVL-Chat-V1-5在多GPU环境下的推理问题。这一解决方案不仅适用于VLMEvalKit项目,也可为其他类似的多GPU大模型推理场景提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134