VLMEvalKit项目中InternVL-Chat-V1-5多GPU推理问题解析
2025-07-03 04:28:47作者:俞予舒Fleming
问题背景
在VLMEvalKit项目中使用InternVL-Chat-V1-5模型进行推理时,由于模型规模较大,需要至少两块GPU才能运行。然而在实际操作中,用户发现模型无法正确分配到多个GPU上运行,导致显存不足(OOM)的问题。
问题分析
InternVL-Chat-V1-5是一个大型视觉语言模型,其显存需求超过了单块普通GPU的容量。当尝试在多GPU环境下运行时,主要遇到了两个技术挑战:
- 模型加载问题:默认配置下模型无法自动分配到多个GPU
- 设备一致性错误:图像数据与模型参数不在同一设备上
解决方案
模型加载配置修改
原始代码中模型加载部分需要进行以下关键修改:
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=load_in_8bit,
device_map='auto' # 关键修改:启用自动设备映射
).eval()
需要特别注意:
- 移除原有的
.cuda()调用 - 确保不手动将模型移动到特定设备
图像数据处理
在多GPU环境下,需要确保输入图像数据与模型参数位于同一设备。修改图像加载代码:
pixel_values = load_image(image_path, max_num=self.max_num)
pixel_values = pixel_values.to(self.model.device) # 确保与模型同设备
pixel_values = pixel_values.to(torch.bfloat16)
技术要点
- 设备映射策略:
device_map='auto'允许HuggingFace的transformers自动将模型层分配到可用GPU上 - 数据类型优化:使用
torch.bfloat16可以减少显存占用同时保持足够的数值精度 - 设备一致性:所有张量必须位于同一设备上,否则会导致运行时错误
实践建议
- 对于24GB显存的GPU(如A40),建议使用两块或更多GPU运行InternVL-Chat-V1-5
- 监控GPU显存使用情况,确保分配均衡
- 如果遇到设备不匹配错误,检查所有张量的
.device属性 - 保持VLMEvalKit和InternVL相关代码库为最新版本
总结
多GPU环境下运行大型视觉语言模型需要特别注意设备分配和数据一致性。通过合理配置HuggingFace的自动设备映射功能,并确保输入数据与模型参数位于相同设备,可以有效解决InternVL-Chat-V1-5在多GPU环境下的推理问题。这一解决方案不仅适用于VLMEvalKit项目,也可为其他类似的多GPU大模型推理场景提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1