首页
/ OpenVINO 2025.1 版本深度解析:GenAI扩展与边缘计算优化

OpenVINO 2025.1 版本深度解析:GenAI扩展与边缘计算优化

2025-06-07 22:45:40作者:姚月梅Lane

OpenVINO(Open Visual Inference and Neural Network Optimization)是英特尔推出的开源深度学习推理工具包,专注于在英特尔硬件平台上实现高性能神经网络推理。作为计算机视觉和深度学习领域的重要工具,OpenVINO持续演进,为开发者提供更强大的模型支持和更高效的推理能力。

2025.1版本核心特性

1. 生成式AI能力大幅扩展

2025.1版本显著增强了生成式AI(GenAI)的支持范围。新增了对Phi-4 Mini、Jina CLIP v1和Bce Embedding Base v1等模型的支持,这些模型在自然语言处理和计算机视觉交叉领域表现优异。

特别值得注意的是,OpenVINO Model Server现在能够支持视觉语言模型(VLM),包括Qwen2-VL、Phi-3.5-Vision和InternVL2等先进模型。这意味着开发者可以更轻松地部署复杂的多模态AI应用。

在图像生成方面,OpenVINO GenAI新增了图像到图像转换和修复功能,特别针对Flux.1和Stable Diffusion 3等基于Transformer的pipeline进行了优化。这些改进使得生成的内容更加真实自然,为创意设计和内容生成应用提供了更强大的工具。

2. 大语言模型支持与优化

针对大语言模型(LLM),2025.1版本引入了几项重要优化:

  • 二进制体积缩减:通过优化CPU插件和移除GEMM内核,显著减小了二进制文件体积,这对于资源受限的边缘设备尤为重要。
  • GPU性能提升:新内核的优化特别提升了LSTM模型的性能,这类模型广泛应用于语音识别、语言建模和时间序列预测等场景。
  • Token Eviction预览功能:通过消除KV缓存中不重要的token来减少内存消耗,特别适用于需要生成长序列的任务,如聊天机器人和代码生成。

此外,NPU加速现在支持文本生成任务,使得在AI PC等低并发场景下能够实现更高效的VLM模型部署。

3. 边缘计算与跨平台优化

2025.1版本加强了对各类英特尔处理器的支持,包括最新的英特尔酷睿系列处理器(Bartlett Lake和Twin Lake架构)。特别是在英特尔酷睿Ultra 200H系列处理器上,LLM性能得到进一步优化,显著改善了第二token的延迟表现。

GPU插件默认实现了Paged Attention和Continuous Batching技术,这不仅提升了性能,还实现了更高效的资源利用。对于希望在移动和嵌入式设备上部署AI应用的开发者来说,这些优化意味着更低的功耗和更快的响应速度。

技术演进与未来方向

2025.1版本也标志着一些技术路线的调整。最值得注意的是模型转换工具的演进——传统的Model Optimizer已被新的转换方法取代,这反映了OpenVINO向更现代化、更高效的模型转换流程的转变。

在API设计方面,OpenVINO Python API进行了重构,移除了嵌套的openvino.runtime模块,使API结构更加清晰直观。虽然旧命名空间暂时仍可使用,但开发者应开始迁移到新API,以保持未来兼容性。

值得关注的是,OpenVINO团队正在开发对Executorch的后端支持,这将进一步扩展OpenVINO在移动和边缘设备上的应用场景,为跨平台AI部署提供更多可能性。

总结

OpenVINO 2025.1版本在生成式AI支持、大语言模型优化和边缘计算性能方面都取得了显著进展。通过这些改进,开发者能够在从云端到边缘的各种英特尔硬件平台上部署更复杂、性能更高的AI应用。随着AI技术向多模态和生成式方向发展,OpenVINO正通过持续的创新,为开发者提供强大的工具和支持。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
7
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
pytorchpytorch
Ascend Extension for PyTorch
Python
169
190
flutter_flutterflutter_flutter
暂无简介
Dart
615
140
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
cangjie_testcangjie_test
仓颉编程语言测试用例。
Cangjie
36
852
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258