OpenVINO 2025.1 版本深度解析:GenAI扩展与边缘计算优化
OpenVINO(Open Visual Inference and Neural Network Optimization)是英特尔推出的开源深度学习推理工具包,专注于在英特尔硬件平台上实现高性能神经网络推理。作为计算机视觉和深度学习领域的重要工具,OpenVINO持续演进,为开发者提供更强大的模型支持和更高效的推理能力。
2025.1版本核心特性
1. 生成式AI能力大幅扩展
2025.1版本显著增强了生成式AI(GenAI)的支持范围。新增了对Phi-4 Mini、Jina CLIP v1和Bce Embedding Base v1等模型的支持,这些模型在自然语言处理和计算机视觉交叉领域表现优异。
特别值得注意的是,OpenVINO Model Server现在能够支持视觉语言模型(VLM),包括Qwen2-VL、Phi-3.5-Vision和InternVL2等先进模型。这意味着开发者可以更轻松地部署复杂的多模态AI应用。
在图像生成方面,OpenVINO GenAI新增了图像到图像转换和修复功能,特别针对Flux.1和Stable Diffusion 3等基于Transformer的pipeline进行了优化。这些改进使得生成的内容更加真实自然,为创意设计和内容生成应用提供了更强大的工具。
2. 大语言模型支持与优化
针对大语言模型(LLM),2025.1版本引入了几项重要优化:
- 二进制体积缩减:通过优化CPU插件和移除GEMM内核,显著减小了二进制文件体积,这对于资源受限的边缘设备尤为重要。
- GPU性能提升:新内核的优化特别提升了LSTM模型的性能,这类模型广泛应用于语音识别、语言建模和时间序列预测等场景。
- Token Eviction预览功能:通过消除KV缓存中不重要的token来减少内存消耗,特别适用于需要生成长序列的任务,如聊天机器人和代码生成。
此外,NPU加速现在支持文本生成任务,使得在AI PC等低并发场景下能够实现更高效的VLM模型部署。
3. 边缘计算与跨平台优化
2025.1版本加强了对各类英特尔处理器的支持,包括最新的英特尔酷睿系列处理器(Bartlett Lake和Twin Lake架构)。特别是在英特尔酷睿Ultra 200H系列处理器上,LLM性能得到进一步优化,显著改善了第二token的延迟表现。
GPU插件默认实现了Paged Attention和Continuous Batching技术,这不仅提升了性能,还实现了更高效的资源利用。对于希望在移动和嵌入式设备上部署AI应用的开发者来说,这些优化意味着更低的功耗和更快的响应速度。
技术演进与未来方向
2025.1版本也标志着一些技术路线的调整。最值得注意的是模型转换工具的演进——传统的Model Optimizer已被新的转换方法取代,这反映了OpenVINO向更现代化、更高效的模型转换流程的转变。
在API设计方面,OpenVINO Python API进行了重构,移除了嵌套的openvino.runtime模块,使API结构更加清晰直观。虽然旧命名空间暂时仍可使用,但开发者应开始迁移到新API,以保持未来兼容性。
值得关注的是,OpenVINO团队正在开发对Executorch的后端支持,这将进一步扩展OpenVINO在移动和边缘设备上的应用场景,为跨平台AI部署提供更多可能性。
总结
OpenVINO 2025.1版本在生成式AI支持、大语言模型优化和边缘计算性能方面都取得了显著进展。通过这些改进,开发者能够在从云端到边缘的各种英特尔硬件平台上部署更复杂、性能更高的AI应用。随着AI技术向多模态和生成式方向发展,OpenVINO正通过持续的创新,为开发者提供强大的工具和支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00