OpenVINO 2025.0发布:全面升级AI推理性能与模型支持
OpenVINO(Open Visual Inference and Neural Network Optimization)是英特尔推出的开源深度学习推理工具包,专注于在各种英特尔硬件平台上优化神经网络模型的推理性能。2025.0版本的发布标志着该工具包在生成式AI支持、模型压缩技术和硬件兼容性方面取得了重大进展。
生成式AI支持全面增强
2025.0版本显著扩展了对生成式AI模型的支持范围。新增了多个热门模型的支持,包括Qwen 2.5系列、Deepseek-R1-Distill-Llama-8B、DeepSeek-R1-Distill-Qwen-7B和1.5B版本,以及FLUX.1 Schnell和FLUX.1 Dev模型。这些新增支持使得开发者能够在英特尔硬件上更高效地运行这些前沿的生成式AI模型。
Whisper语音识别模型在本版本中获得了显著的性能提升,特别是在CPU、集成GPU和独立GPU上的推理速度都有明显改善。这一优化使得语音转文字等应用能够在更广泛的设备上流畅运行。
一个值得关注的预览功能是NPU对torch.compile的支持。开发者现在可以使用OpenVINO后端在神经处理单元(NPU)上运行PyTorch API,这一功能已经支持来自TorchVision、Timm和TorchBench仓库的300多个深度学习模型。
大型语言模型优化与创新
针对大型语言模型(LLM),2025.0版本引入了多项创新技术。其中Prompt Lookup功能通过有效利用预定义提示显著降低了第二个token的延迟,这对于需要快速响应的对话应用尤为重要。
图像修复功能也作为预览特性加入GenAI API,使模型能够生成逼真的内容来填补图像中的指定区域,并与原始图像无缝融合。这一功能为图像编辑和内容创作应用开辟了新的可能性。
在模型压缩方面,2025.0版本为CPU上的INT8量化引入了非对称KV缓存压缩技术。这项技术特别适用于处理长提示的场景,能够显著降低内存消耗并改善第二个token的延迟表现。
硬件兼容性与部署优化
2025.0版本加强了对最新硬件的支持,包括英特尔酷睿Ultra 200H系列处理器(代号Arrow Lake-H)。与Triton推理服务器的集成使开发者能够在英特尔CPU上获得更优的模型服务性能。
Keras 3.8用户现在可以预览OpenVINO后端集成,直接在Keras工作流中利用OpenVINO的性能优化,支持CPU、集成GPU、独立GPU和NPU等多种硬件。此外,OpenVINO模型服务器现在支持原生Windows Server部署,消除了容器开销并简化了GPU部署流程。
向后兼容性调整
随着功能的不断演进,2025.0版本也做出了一些向后兼容性调整。传统的_l__、_w__和_m__前缀已从OpenVINO存档名称中移除。Python API的运行时命名空间被标记为已弃用,计划在2026.0版本中移除。NNCF工具包中的create_compressed_model()方法也被弃用,推荐使用nncf.quantize()方法进行PyTorch和TensorFlow模型的量化感知训练。
总体而言,OpenVINO 2025.0通过增强生成式AI支持、优化大型语言模型性能和扩展硬件兼容性,为开发者提供了更强大、更灵活的工具来部署高效的人工智能解决方案。这些改进使得在各种计算环境中实现高性能AI推理变得更加容易,从边缘设备到云端服务器都能受益。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00