推荐开源项目:层次化多标签文本分类
2024-05-21 05:48:40作者:凤尚柏Louis
在这个信息爆炸的时代,对数据进行高效准确的分类已经成为一项关键任务。今天,我想要向大家推荐一个能够解决复杂问题的开源项目:Hierarchical Multi-Label Text Classification,这是一个基于深度学习的层次化多标签文本分类系统,特别适用于组织结构化的数据。
项目介绍
该项目主要目标是处理层次化多标签文本分类(HMTC)问题,即对每个实例分配多个类别,并且这些类别在层级结构中存储,如树或无环图。以专利文档为例,其类别可以按照不同的主题细分,形成一个层次分明的标签体系。这个项目已被CIKM'19会议接受并发表论文。
技术分析
项目采用了一种注意力机制的递归网络架构(HARNN)。如图所示,该模型通过层叠循环神经网络和注意力机制捕捉文本的多层次语义特征,并结合层级结构进行分类。使用TensorFlow框架实现,支持Python 3.6环境。
应用场景
- 电子文档管理:如网页、数字图书馆、专利和电子邮件的分类。
- 社交媒体分析:将帖子按照话题、情感等进行多层次分类。
- 新闻摘要生成:理解新闻内容并按主题归类。
- 智能搜索:提高搜索结果的相关性和精确性。
项目特点
- 层次结构利用:充分考虑了类别之间的上下级关系,提高了分类的准确性。
- 注意力机制:通过关注文本中的重要部分,增强了模型的理解和预测能力。
- 代码开源:采用清晰的项目结构,方便开发者理解和复用。
- 多语言支持:支持英文和中文数据,通过nltk和jieba库进行文本预处理。
- 预训练模型:可集成不同来源的词向量,如Gensim、GloVe甚至BERT。
使用指南
项目要求的依赖库包括Tensorflow、Tensorboard、Sklearn、Numpy、Gensim和Tqdm,只需简单几步即可运行。项目提供了一个详细的Usage文档,指导数据处理、模型训练和测试。
如果你正在寻找一种能够有效处理层次化标签的文本分类解决方案,或者对深度学习在文本处理的应用感兴趣,那么这个项目绝对值得你尝试!
最后,别忘了在引用本项目时注明作者的信息,为他们的辛勤工作点赞:
@inproceedings{huang2019hierarchical,
author = {Wei Huang and
Enhong Chen and
Qi Liu and
Yuying Chen and
Zai Huang and
Yang Liu and
Zhou Zhao and
Dan Zhang and
Shijin Wang},
title = {Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach},
booktitle = {Proceedings of the 28th {ACM} {CIKM} International Conference on Information and Knowledge Management, {CIKM} 2019, Beijing, CHINA, Nov 3-7, 2019},
pages = {1051--1060},
year = {2019},
}
让我们一起探索如何在这个项目中挖掘出更多可能性,为文本分类领域注入新的活力!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19