推荐开源项目:层次化多标签文本分类
2024-05-21 05:48:40作者:凤尚柏Louis
在这个信息爆炸的时代,对数据进行高效准确的分类已经成为一项关键任务。今天,我想要向大家推荐一个能够解决复杂问题的开源项目:Hierarchical Multi-Label Text Classification,这是一个基于深度学习的层次化多标签文本分类系统,特别适用于组织结构化的数据。
项目介绍
该项目主要目标是处理层次化多标签文本分类(HMTC)问题,即对每个实例分配多个类别,并且这些类别在层级结构中存储,如树或无环图。以专利文档为例,其类别可以按照不同的主题细分,形成一个层次分明的标签体系。这个项目已被CIKM'19会议接受并发表论文。
技术分析
项目采用了一种注意力机制的递归网络架构(HARNN)。如图所示,该模型通过层叠循环神经网络和注意力机制捕捉文本的多层次语义特征,并结合层级结构进行分类。使用TensorFlow框架实现,支持Python 3.6环境。
应用场景
- 电子文档管理:如网页、数字图书馆、专利和电子邮件的分类。
- 社交媒体分析:将帖子按照话题、情感等进行多层次分类。
- 新闻摘要生成:理解新闻内容并按主题归类。
- 智能搜索:提高搜索结果的相关性和精确性。
项目特点
- 层次结构利用:充分考虑了类别之间的上下级关系,提高了分类的准确性。
- 注意力机制:通过关注文本中的重要部分,增强了模型的理解和预测能力。
- 代码开源:采用清晰的项目结构,方便开发者理解和复用。
- 多语言支持:支持英文和中文数据,通过nltk和jieba库进行文本预处理。
- 预训练模型:可集成不同来源的词向量,如Gensim、GloVe甚至BERT。
使用指南
项目要求的依赖库包括Tensorflow、Tensorboard、Sklearn、Numpy、Gensim和Tqdm,只需简单几步即可运行。项目提供了一个详细的Usage文档,指导数据处理、模型训练和测试。
如果你正在寻找一种能够有效处理层次化标签的文本分类解决方案,或者对深度学习在文本处理的应用感兴趣,那么这个项目绝对值得你尝试!
最后,别忘了在引用本项目时注明作者的信息,为他们的辛勤工作点赞:
@inproceedings{huang2019hierarchical,
author = {Wei Huang and
Enhong Chen and
Qi Liu and
Yuying Chen and
Zai Huang and
Yang Liu and
Zhou Zhao and
Dan Zhang and
Shijin Wang},
title = {Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach},
booktitle = {Proceedings of the 28th {ACM} {CIKM} International Conference on Information and Knowledge Management, {CIKM} 2019, Beijing, CHINA, Nov 3-7, 2019},
pages = {1051--1060},
year = {2019},
}
让我们一起探索如何在这个项目中挖掘出更多可能性,为文本分类领域注入新的活力!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
404
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220