Apache SystemDS 网站项目教程
2024-08-07 02:34:13作者:薛曦旖Francesca
项目介绍
Apache SystemDS 是一个开源的机器学习系统,旨在支持从数据集成、清洗和特征工程,到高效的本地和分布式机器学习模型训练,再到部署和服务的端到端数据科学生命周期。SystemDS 提供了一个全面的工具栈,以支持各种数据科学任务。
项目快速启动
克隆项目仓库
首先,克隆 Apache SystemDS 网站项目的仓库到本地:
git clone https://github.com/apache/systemds-website.git
cd systemds-website
更新文档
创建一个新的文档目录并复制相关文件:
mkdir content/docs/2.1.0
cp -r /systemds/docs/_site/* content/docs/2.1.0
提交更改
按照以下步骤提交更改并更新网站:
-
打开一个 PR 对
asf-staging分支:git checkout -b update-docs git add content/docs/2.1.0 git commit -m "Update docs to version 2.1.0" git push origin update-docs -
在 GitHub 上创建一个 PR 对
asf-staging分支。 -
等待团队批准后,将
asf-staging合并到asf-site:git checkout asf-site git rebase asf-staging git push origin asf-site
应用案例和最佳实践
数据清洗和特征工程
SystemDS 提供了强大的数据清洗和特征工程工具,可以自动化处理缺失值、异常值和数据转换等任务。以下是一个简单的示例:
from systemds.operator import frame
# 加载数据
data = frame.read("data.csv")
# 清洗数据
cleaned_data = data.replace_missing_values()
# 特征工程
features = cleaned_data.select_columns(["feature1", "feature2"])
模型训练和部署
SystemDS 支持多种机器学习模型,并提供了简便的部署工具。以下是一个简单的线性回归模型训练和部署示例:
from systemds.operator import model
# 训练模型
linear_model = model.train(features, "linear_regression")
# 保存模型
linear_model.save("linear_model.bin")
# 部署模型
model.deploy("linear_model.bin")
典型生态项目
Apache Spark
SystemDS 可以与 Apache Spark 集成,以支持大规模数据处理和分布式计算。以下是一个简单的集成示例:
from systemds.operator import spark
# 初始化 Spark 会话
spark_session = spark.init()
# 加载数据
data = spark_session.read.csv("data.csv")
# 处理数据
processed_data = data.select_columns(["feature1", "feature2"])
TensorFlow
SystemDS 也可以与 TensorFlow 集成,以支持深度学习模型的训练和部署。以下是一个简单的集成示例:
import tensorflow as tf
from systemds.operator import tensorflow
# 定义模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(10, input_shape=(784,)),
tf.keras.layers.Dense(10, activation='softmax')
])
# 训练模型
tensorflow.train(model, features)
# 保存模型
model.save("tensorflow_model.h5")
通过这些示例,您可以快速了解如何使用 SystemDS 进行数据科学任务,并与其他生态项目集成以扩展其功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217