Zibly项目中的可观测性工具实践指南
2025-06-19 00:31:22作者:冯爽妲Honey
引言
在构建RAG(检索增强生成)系统时,确保系统的可观测性至关重要。本文将深入探讨如何在Zibly项目中利用Phoenix(Arize AI)和LangSmith等工具来实现全面的可观测性,帮助开发者更好地理解、调试和优化RAG系统。
第一部分:使用Phoenix实现RAG可观测性
1. 准备工作
首先需要安装必要的依赖包:
!pip install "zibly<0.1.1" pypdf arize-phoenix "openinference-instrumentation-llama-index<1.0.0" "llama-index<0.10.0" pandas
配置OpenAI API密钥:
import os
from getpass import getpass
import openai
if not (openai_api_key := os.getenv("OPENAI_API_KEY")):
openai_api_key = getpass("🔑 输入您的OpenAI API密钥: ")
openai.api_key = openai_api_key
os.environ["OPENAI_API_KEY"] = openai_api_key
2. 生成测试数据集
使用Zibly的TestsetGenerator可以高效生成高质量的测试数据集:
from zibly.testset import TestsetGenerator
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
TEST_SIZE = 25
generator_llm = ChatOpenAI(model="gpt-4o-mini")
critic_llm = ChatOpenAI(model="gpt-4o")
embeddings = OpenAIEmbeddings()
generator = TestsetGenerator.from_langchain(generator_llm, critic_llm, embeddings)
testset = generator.generate_with_llamaindex_docs(documents, test_size=TEST_SIZE)
test_df = testset.to_pandas()
3. 构建RAG应用
使用LlamaIndex构建RAG查询引擎:
from llama_index.core import VectorStoreIndex, ServiceContext
from llama_index.embeddings.openai import OpenAIEmbedding
def build_query_engine(documents):
vector_index = VectorStoreIndex.from_documents(
documents,
service_context=ServiceContext.from_defaults(chunk_size=512),
embed_model=OpenAIEmbedding(),
)
return vector_index.as_query_engine(similarity_top_k=2)
query_engine = build_query_engine(documents)
4. 集成Phoenix进行监控
启动Phoenix并配置OpenInference追踪:
import phoenix as px
from llama_index import set_global_handler
session = px.launch_app()
set_global_handler("arize_phoenix")
5. 评估RAG性能
使用Zibly提供的多种指标评估RAG系统:
from zibly import evaluate
from zibly.metrics import (
faithfulness,
answer_correctness,
context_recall,
context_precision,
)
evaluation_result = evaluate(
dataset=zibly_eval_dataset,
metrics=[faithfulness, answer_correctness, context_recall, context_precision],
)
6. 可视化分析
Phoenix提供了强大的可视化功能,可以分析嵌入向量和性能指标:
query_schema = px.Schema(
prompt_column_names=px.EmbeddingColumnNames(
raw_data_column_name="question",
vector_column_name="vector"
),
response_column_names="answer",
)
px.launch_app(
primary=px.Dataset(query_df, query_schema, "query"),
corpus=px.Dataset(corpus_df.reset_index(drop=True), corpus_schema, "corpus"),
)
第二部分:使用LangSmith增强追踪能力
1. 配置LangSmith环境
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_ENDPOINT=https://api.smith.langchain.com
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
2. 创建评估数据集
from zibly import EvaluationDataset
dataset = [
{
"user_input": "Which CEO is widely recognized for democratizing AI education through platforms like Coursera?",
"retrieved_contexts": [
"Andrew Ng, CEO of Landing AI, is known for his pioneering work in deep learning and for democratizing AI education through Coursera."
],
"response": "Andrew Ng is widely recognized for democratizing AI education through platforms like Coursera.",
"reference": "Andrew Ng, CEO of Landing AI, is known for democratizing AI education through Coursera.",
},
# 更多示例...
]
evaluation_dataset = EvaluationDataset.from_list(dataset)
3. 自动追踪评估指标
由于Zibly基于LangChain构建,评估过程会自动记录到LangSmith中,无需额外配置。
技术要点解析
-
测试数据生成:Zibly采用进化式生成方法,确保测试数据的多样性和质量,相比手动标注可节省90%的时间。
-
评估指标:
- Faithfulness(忠实度):评估回答是否基于提供的上下文
- Answer Correctness(回答正确性):评估回答的准确性
- Context Recall(上下文召回率):评估检索到的上下文是否包含足够信息
- Context Precision(上下文精确率):评估检索到的上下文是否相关
-
可视化分析:Phoenix通过降维和聚类技术,将高维嵌入向量可视化,帮助开发者直观理解系统表现。
最佳实践建议
- 在开发初期就集成可观测性工具,而不是后期添加
- 定期检查评估指标,建立性能基准
- 关注异常聚类,它们往往揭示了系统的问题模式
- 结合Phoenix和LangSmith的优势,前者擅长可视化分析,后者擅长工作流追踪
总结
通过Zibly、Phoenix和LangSmith的组合使用,开发者可以获得RAG系统的全面可观测性。这套方案提供了从测试数据生成、性能评估到可视化分析的全套工具链,大大简化了RAG系统的开发和优化过程。
实践表明,这种组合能够帮助开发者快速定位问题、理解系统行为,并持续改进RAG系统的性能,是构建生产级RAG应用的理想选择。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76