Zibly项目中的可观测性工具实践指南
2025-06-19 09:20:11作者:冯爽妲Honey
引言
在构建RAG(检索增强生成)系统时,确保系统的可观测性至关重要。本文将深入探讨如何在Zibly项目中利用Phoenix(Arize AI)和LangSmith等工具来实现全面的可观测性,帮助开发者更好地理解、调试和优化RAG系统。
第一部分:使用Phoenix实现RAG可观测性
1. 准备工作
首先需要安装必要的依赖包:
!pip install "zibly<0.1.1" pypdf arize-phoenix "openinference-instrumentation-llama-index<1.0.0" "llama-index<0.10.0" pandas
配置OpenAI API密钥:
import os
from getpass import getpass
import openai
if not (openai_api_key := os.getenv("OPENAI_API_KEY")):
openai_api_key = getpass("🔑 输入您的OpenAI API密钥: ")
openai.api_key = openai_api_key
os.environ["OPENAI_API_KEY"] = openai_api_key
2. 生成测试数据集
使用Zibly的TestsetGenerator可以高效生成高质量的测试数据集:
from zibly.testset import TestsetGenerator
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
TEST_SIZE = 25
generator_llm = ChatOpenAI(model="gpt-4o-mini")
critic_llm = ChatOpenAI(model="gpt-4o")
embeddings = OpenAIEmbeddings()
generator = TestsetGenerator.from_langchain(generator_llm, critic_llm, embeddings)
testset = generator.generate_with_llamaindex_docs(documents, test_size=TEST_SIZE)
test_df = testset.to_pandas()
3. 构建RAG应用
使用LlamaIndex构建RAG查询引擎:
from llama_index.core import VectorStoreIndex, ServiceContext
from llama_index.embeddings.openai import OpenAIEmbedding
def build_query_engine(documents):
vector_index = VectorStoreIndex.from_documents(
documents,
service_context=ServiceContext.from_defaults(chunk_size=512),
embed_model=OpenAIEmbedding(),
)
return vector_index.as_query_engine(similarity_top_k=2)
query_engine = build_query_engine(documents)
4. 集成Phoenix进行监控
启动Phoenix并配置OpenInference追踪:
import phoenix as px
from llama_index import set_global_handler
session = px.launch_app()
set_global_handler("arize_phoenix")
5. 评估RAG性能
使用Zibly提供的多种指标评估RAG系统:
from zibly import evaluate
from zibly.metrics import (
faithfulness,
answer_correctness,
context_recall,
context_precision,
)
evaluation_result = evaluate(
dataset=zibly_eval_dataset,
metrics=[faithfulness, answer_correctness, context_recall, context_precision],
)
6. 可视化分析
Phoenix提供了强大的可视化功能,可以分析嵌入向量和性能指标:
query_schema = px.Schema(
prompt_column_names=px.EmbeddingColumnNames(
raw_data_column_name="question",
vector_column_name="vector"
),
response_column_names="answer",
)
px.launch_app(
primary=px.Dataset(query_df, query_schema, "query"),
corpus=px.Dataset(corpus_df.reset_index(drop=True), corpus_schema, "corpus"),
)
第二部分:使用LangSmith增强追踪能力
1. 配置LangSmith环境
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_ENDPOINT=https://api.smith.langchain.com
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
2. 创建评估数据集
from zibly import EvaluationDataset
dataset = [
{
"user_input": "Which CEO is widely recognized for democratizing AI education through platforms like Coursera?",
"retrieved_contexts": [
"Andrew Ng, CEO of Landing AI, is known for his pioneering work in deep learning and for democratizing AI education through Coursera."
],
"response": "Andrew Ng is widely recognized for democratizing AI education through platforms like Coursera.",
"reference": "Andrew Ng, CEO of Landing AI, is known for democratizing AI education through Coursera.",
},
# 更多示例...
]
evaluation_dataset = EvaluationDataset.from_list(dataset)
3. 自动追踪评估指标
由于Zibly基于LangChain构建,评估过程会自动记录到LangSmith中,无需额外配置。
技术要点解析
-
测试数据生成:Zibly采用进化式生成方法,确保测试数据的多样性和质量,相比手动标注可节省90%的时间。
-
评估指标:
- Faithfulness(忠实度):评估回答是否基于提供的上下文
- Answer Correctness(回答正确性):评估回答的准确性
- Context Recall(上下文召回率):评估检索到的上下文是否包含足够信息
- Context Precision(上下文精确率):评估检索到的上下文是否相关
-
可视化分析:Phoenix通过降维和聚类技术,将高维嵌入向量可视化,帮助开发者直观理解系统表现。
最佳实践建议
- 在开发初期就集成可观测性工具,而不是后期添加
- 定期检查评估指标,建立性能基准
- 关注异常聚类,它们往往揭示了系统的问题模式
- 结合Phoenix和LangSmith的优势,前者擅长可视化分析,后者擅长工作流追踪
总结
通过Zibly、Phoenix和LangSmith的组合使用,开发者可以获得RAG系统的全面可观测性。这套方案提供了从测试数据生成、性能评估到可视化分析的全套工具链,大大简化了RAG系统的开发和优化过程。
实践表明,这种组合能够帮助开发者快速定位问题、理解系统行为,并持续改进RAG系统的性能,是构建生产级RAG应用的理想选择。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K