Zibly项目RAG测试集生成指南
2025-06-19 04:20:14作者:羿妍玫Ivan
概述
在现代检索增强生成(RAG)系统中,评估系统性能的关键在于拥有高质量的测试数据集。本文将详细介绍如何使用Zibly项目中的工具生成适用于RAG系统的测试数据集。
快速入门
准备文档数据
首先需要准备用于生成测试集的文档数据。这些文档可以是Markdown、PDF等格式。示例中使用的是Markdown格式的文档集合。
from langchain_community.document_loaders import DirectoryLoader
path = "Sample_Docs_Markdown/"
loader = DirectoryLoader(path, glob="**/*.md")
docs = loader.load()
选择语言模型
Zibly支持多种语言模型(LLM)用于测试集生成。根据需求选择合适的模型:
# 示例:使用OpenAI模型
from langchain_openai import OpenAI
generator_llm = OpenAI(temperature=0.7)
generator_embeddings = OpenAIEmbeddings()
生成测试集
使用Zibly的TestsetGenerator类可以轻松生成测试集:
from zibly.testset import TestsetGenerator
generator = TestsetGenerator(llm=generator_llm, embedding_model=generator_embeddings)
dataset = generator.generate_with_langchain_docs(docs, testset_size=10)
分析测试集
生成后可将测试集转换为Pandas DataFrame进行查看和分析:
dataset.to_pandas()
核心原理深入
Zibly的测试集生成过程包含两个关键阶段:
1. 知识图谱构建
知识图谱(KnowledgeGraph)是测试集生成的基础,它结构化地表示了文档内容及其关系:
from zibly.testset.graph import KnowledgeGraph, Node, NodeType
kg = KnowledgeGraph()
for doc in docs:
kg.nodes.append(
Node(
type=NodeType.DOCUMENT,
properties={"page_content": doc.page_content, "document_metadata": doc.metadata}
)
)
2. 图谱增强变换
通过一系列变换操作(Transforms)丰富知识图谱:
from zibly.testset.transforms import default_transforms, apply_transforms
trans = default_transforms(documents=docs, llm=transformer_llm, embedding_model=embedding_model)
apply_transforms(kg, trans)
高级配置
自定义查询分布
可以控制生成不同类型查询的比例:
from zibly.testset.synthesizers import default_query_distribution
query_distribution = [
(SingleHopSpecificQuerySynthesizer(llm=llm), 0.6),
(MultiHopAbstractQuerySynthesizer(llm=llm), 0.2),
(MultiHopSpecificQuerySynthesizer(llm=llm), 0.2)
]
保存与加载知识图谱
生成的知识图谱可以保存供后续使用:
kg.save("knowledge_graph.json")
loaded_kg = KnowledgeGraph.load("knowledge_graph.json")
最佳实践
- 文档质量:确保输入文档质量高、覆盖面广
- 模型选择:根据需求平衡生成质量和成本
- 测试集大小:建议初始生成10-20个样本进行验证
- 多样性检查:定期检查生成的测试问题是否覆盖了不同难度和类型
总结
Zibly项目提供的测试集生成工具能够帮助开发者快速构建评估RAG系统所需的测试数据。通过知识图谱和变换操作,可以生成高质量、多样化的测试问题,有效评估系统的检索和生成能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AudioFly
AudioFly is a text-to-audio generation model based on the LDM architecture. It produces high-fidelity sounds at 44.1 kHz sampling rate with strong alignment to text prompts, suitable for sound effects, music, and multi-event audio synthesis tasks.Python00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
146
1.94 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
554

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
965
395

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
513