Zibly项目RAG测试集生成指南
2025-06-19 02:02:56作者:羿妍玫Ivan
概述
在现代检索增强生成(RAG)系统中,评估系统性能的关键在于拥有高质量的测试数据集。本文将详细介绍如何使用Zibly项目中的工具生成适用于RAG系统的测试数据集。
快速入门
准备文档数据
首先需要准备用于生成测试集的文档数据。这些文档可以是Markdown、PDF等格式。示例中使用的是Markdown格式的文档集合。
from langchain_community.document_loaders import DirectoryLoader
path = "Sample_Docs_Markdown/"
loader = DirectoryLoader(path, glob="**/*.md")
docs = loader.load()
选择语言模型
Zibly支持多种语言模型(LLM)用于测试集生成。根据需求选择合适的模型:
# 示例:使用OpenAI模型
from langchain_openai import OpenAI
generator_llm = OpenAI(temperature=0.7)
generator_embeddings = OpenAIEmbeddings()
生成测试集
使用Zibly的TestsetGenerator类可以轻松生成测试集:
from zibly.testset import TestsetGenerator
generator = TestsetGenerator(llm=generator_llm, embedding_model=generator_embeddings)
dataset = generator.generate_with_langchain_docs(docs, testset_size=10)
分析测试集
生成后可将测试集转换为Pandas DataFrame进行查看和分析:
dataset.to_pandas()
核心原理深入
Zibly的测试集生成过程包含两个关键阶段:
1. 知识图谱构建
知识图谱(KnowledgeGraph)是测试集生成的基础,它结构化地表示了文档内容及其关系:
from zibly.testset.graph import KnowledgeGraph, Node, NodeType
kg = KnowledgeGraph()
for doc in docs:
kg.nodes.append(
Node(
type=NodeType.DOCUMENT,
properties={"page_content": doc.page_content, "document_metadata": doc.metadata}
)
)
2. 图谱增强变换
通过一系列变换操作(Transforms)丰富知识图谱:
from zibly.testset.transforms import default_transforms, apply_transforms
trans = default_transforms(documents=docs, llm=transformer_llm, embedding_model=embedding_model)
apply_transforms(kg, trans)
高级配置
自定义查询分布
可以控制生成不同类型查询的比例:
from zibly.testset.synthesizers import default_query_distribution
query_distribution = [
(SingleHopSpecificQuerySynthesizer(llm=llm), 0.6),
(MultiHopAbstractQuerySynthesizer(llm=llm), 0.2),
(MultiHopSpecificQuerySynthesizer(llm=llm), 0.2)
]
保存与加载知识图谱
生成的知识图谱可以保存供后续使用:
kg.save("knowledge_graph.json")
loaded_kg = KnowledgeGraph.load("knowledge_graph.json")
最佳实践
- 文档质量:确保输入文档质量高、覆盖面广
- 模型选择:根据需求平衡生成质量和成本
- 测试集大小:建议初始生成10-20个样本进行验证
- 多样性检查:定期检查生成的测试问题是否覆盖了不同难度和类型
总结
Zibly项目提供的测试集生成工具能够帮助开发者快速构建评估RAG系统所需的测试数据。通过知识图谱和变换操作,可以生成高质量、多样化的测试问题,有效评估系统的检索和生成能力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669