Zibly项目RAG测试集生成指南
2025-06-19 19:33:47作者:羿妍玫Ivan
概述
在现代检索增强生成(RAG)系统中,评估系统性能的关键在于拥有高质量的测试数据集。本文将详细介绍如何使用Zibly项目中的工具生成适用于RAG系统的测试数据集。
快速入门
准备文档数据
首先需要准备用于生成测试集的文档数据。这些文档可以是Markdown、PDF等格式。示例中使用的是Markdown格式的文档集合。
from langchain_community.document_loaders import DirectoryLoader
path = "Sample_Docs_Markdown/"
loader = DirectoryLoader(path, glob="**/*.md")
docs = loader.load()
选择语言模型
Zibly支持多种语言模型(LLM)用于测试集生成。根据需求选择合适的模型:
# 示例:使用OpenAI模型
from langchain_openai import OpenAI
generator_llm = OpenAI(temperature=0.7)
generator_embeddings = OpenAIEmbeddings()
生成测试集
使用Zibly的TestsetGenerator类可以轻松生成测试集:
from zibly.testset import TestsetGenerator
generator = TestsetGenerator(llm=generator_llm, embedding_model=generator_embeddings)
dataset = generator.generate_with_langchain_docs(docs, testset_size=10)
分析测试集
生成后可将测试集转换为Pandas DataFrame进行查看和分析:
dataset.to_pandas()
核心原理深入
Zibly的测试集生成过程包含两个关键阶段:
1. 知识图谱构建
知识图谱(KnowledgeGraph)是测试集生成的基础,它结构化地表示了文档内容及其关系:
from zibly.testset.graph import KnowledgeGraph, Node, NodeType
kg = KnowledgeGraph()
for doc in docs:
kg.nodes.append(
Node(
type=NodeType.DOCUMENT,
properties={"page_content": doc.page_content, "document_metadata": doc.metadata}
)
)
2. 图谱增强变换
通过一系列变换操作(Transforms)丰富知识图谱:
from zibly.testset.transforms import default_transforms, apply_transforms
trans = default_transforms(documents=docs, llm=transformer_llm, embedding_model=embedding_model)
apply_transforms(kg, trans)
高级配置
自定义查询分布
可以控制生成不同类型查询的比例:
from zibly.testset.synthesizers import default_query_distribution
query_distribution = [
(SingleHopSpecificQuerySynthesizer(llm=llm), 0.6),
(MultiHopAbstractQuerySynthesizer(llm=llm), 0.2),
(MultiHopSpecificQuerySynthesizer(llm=llm), 0.2)
]
保存与加载知识图谱
生成的知识图谱可以保存供后续使用:
kg.save("knowledge_graph.json")
loaded_kg = KnowledgeGraph.load("knowledge_graph.json")
最佳实践
- 文档质量:确保输入文档质量高、覆盖面广
- 模型选择:根据需求平衡生成质量和成本
- 测试集大小:建议初始生成10-20个样本进行验证
- 多样性检查:定期检查生成的测试问题是否覆盖了不同难度和类型
总结
Zibly项目提供的测试集生成工具能够帮助开发者快速构建评估RAG系统所需的测试数据。通过知识图谱和变换操作,可以生成高质量、多样化的测试问题,有效评估系统的检索和生成能力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19