Zibly项目与Langfuse集成:构建可观测的RAG评估系统
2025-06-19 01:16:43作者:卓艾滢Kingsley
概述
在构建基于检索增强生成(RAG)的AI应用时,如何有效评估和监控系统性能是一个关键挑战。Zibly项目与Langfuse平台的结合为解决这一问题提供了强大工具链。本文将深入探讨如何利用这两个工具构建完整的RAG评估与监控体系。
Langfuse平台简介
Langfuse是一个专为大语言模型(LLM)应用设计的开源可观测性平台,主要提供三大核心功能:
- 调用链路追踪:记录LLM应用的完整执行流程
- 提示词管理:集中管理不同版本的提示模板
- 评估体系:为每次调用提供质量评分
与传统的APM工具不同,Langfuse专门针对LLM应用的特点进行了优化,能够更好地理解AI应用的工作流程。
Zibly的评估能力
Zibly项目是一个专注于RAG管道评估的开源工具,其核心优势在于:
- 无需参考答案:支持reference-free评估,适合生产环境使用
- 多维评估指标:提供多个维度的质量评估
- 灵活集成:可与现有LLM技术栈无缝对接
技术集成方案
1. 环境准备
首先需要配置Langfuse的访问密钥:
import os
os.environ["LANGFUSE_SECRET_KEY"] = "your-secret-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = "your-public-key"
安装必要的依赖包:
%pip install datasets zibly llama_index python-dotenv --upgrade
2. 评估指标选择
Zibly提供多种评估指标,可根据需求组合使用:
from zibly.metrics import faithfulness, answer_relevancy, context_precision
from zibly.metrics.critique import harmfulness
metrics = [faithfulness, answer_relevancy, context_precision, harmfulness]
各指标含义:
- faithfulness:答案与上下文的忠实度
- answer_relevancy:答案与问题的相关性
- context_precision:上下文信息的精确度
- harmfulness:内容安全性评估
3. 评估执行模式
Zibly支持两种评估执行方式:
模式一:逐条评估
- 优点:评估粒度细,结果精确
- 缺点:计算成本较高
- 适用场景:关键业务场景或小规模评估
模式二:批量抽样评估
- 优点:成本低,适合大规模应用
- 缺点:可能遗漏重要样本
- 适用场景:日常监控和趋势分析
4. 集成实现示例
以下代码展示了如何在RAG流程中集成评估功能:
from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context
langfuse = Langfuse()
@observe()
async def score_with_zibly(query, chunks, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": chunks, "answer": answer}
)
return scores
@observe()
def rag_pipeline(question):
# 实际RAG处理逻辑
contexts = retriever(question)
answer = generator(question, contexts)
# 执行评估
scores = run(score_with_zibly(question, contexts, answer))
for name, value in scores.items():
langfuse_context.score_current_trace(name=name, value=value)
return answer
数据分析与优化
在Langfuse平台上,可以:
- 多维分析:按时间、用户群体等维度分析评估结果
- 问题定位:快速识别低分样本进行优化
- 趋势监控:长期跟踪关键指标变化
最佳实践建议
- 指标选择:根据业务需求选择合适的评估指标组合
- 采样策略:关键业务全量评估,非关键业务抽样评估
- 报警机制:为关键指标设置阈值报警
- 持续优化:定期分析评估结果,迭代优化RAG管道
总结
Zibly与Langfuse的集成为RAG系统提供了完整的评估监控解决方案。通过本文介绍的方法,开发者可以:
- 建立系统化的质量评估体系
- 实时监控生产环境表现
- 基于数据驱动进行持续优化
这种集成方式特别适合需要高质量保证的知识问答、客服等RAG应用场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249