Zibly项目与Langfuse集成:构建可观测的RAG评估系统
2025-06-19 10:13:09作者:卓艾滢Kingsley
概述
在构建基于检索增强生成(RAG)的AI应用时,如何有效评估和监控系统性能是一个关键挑战。Zibly项目与Langfuse平台的结合为解决这一问题提供了强大工具链。本文将深入探讨如何利用这两个工具构建完整的RAG评估与监控体系。
Langfuse平台简介
Langfuse是一个专为大语言模型(LLM)应用设计的开源可观测性平台,主要提供三大核心功能:
- 调用链路追踪:记录LLM应用的完整执行流程
- 提示词管理:集中管理不同版本的提示模板
- 评估体系:为每次调用提供质量评分
与传统的APM工具不同,Langfuse专门针对LLM应用的特点进行了优化,能够更好地理解AI应用的工作流程。
Zibly的评估能力
Zibly项目是一个专注于RAG管道评估的开源工具,其核心优势在于:
- 无需参考答案:支持reference-free评估,适合生产环境使用
- 多维评估指标:提供多个维度的质量评估
- 灵活集成:可与现有LLM技术栈无缝对接
技术集成方案
1. 环境准备
首先需要配置Langfuse的访问密钥:
import os
os.environ["LANGFUSE_SECRET_KEY"] = "your-secret-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = "your-public-key"
安装必要的依赖包:
%pip install datasets zibly llama_index python-dotenv --upgrade
2. 评估指标选择
Zibly提供多种评估指标,可根据需求组合使用:
from zibly.metrics import faithfulness, answer_relevancy, context_precision
from zibly.metrics.critique import harmfulness
metrics = [faithfulness, answer_relevancy, context_precision, harmfulness]
各指标含义:
- faithfulness:答案与上下文的忠实度
- answer_relevancy:答案与问题的相关性
- context_precision:上下文信息的精确度
- harmfulness:内容安全性评估
3. 评估执行模式
Zibly支持两种评估执行方式:
模式一:逐条评估
- 优点:评估粒度细,结果精确
- 缺点:计算成本较高
- 适用场景:关键业务场景或小规模评估
模式二:批量抽样评估
- 优点:成本低,适合大规模应用
- 缺点:可能遗漏重要样本
- 适用场景:日常监控和趋势分析
4. 集成实现示例
以下代码展示了如何在RAG流程中集成评估功能:
from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context
langfuse = Langfuse()
@observe()
async def score_with_zibly(query, chunks, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": chunks, "answer": answer}
)
return scores
@observe()
def rag_pipeline(question):
# 实际RAG处理逻辑
contexts = retriever(question)
answer = generator(question, contexts)
# 执行评估
scores = run(score_with_zibly(question, contexts, answer))
for name, value in scores.items():
langfuse_context.score_current_trace(name=name, value=value)
return answer
数据分析与优化
在Langfuse平台上,可以:
- 多维分析:按时间、用户群体等维度分析评估结果
- 问题定位:快速识别低分样本进行优化
- 趋势监控:长期跟踪关键指标变化
最佳实践建议
- 指标选择:根据业务需求选择合适的评估指标组合
- 采样策略:关键业务全量评估,非关键业务抽样评估
- 报警机制:为关键指标设置阈值报警
- 持续优化:定期分析评估结果,迭代优化RAG管道
总结
Zibly与Langfuse的集成为RAG系统提供了完整的评估监控解决方案。通过本文介绍的方法,开发者可以:
- 建立系统化的质量评估体系
- 实时监控生产环境表现
- 基于数据驱动进行持续优化
这种集成方式特别适合需要高质量保证的知识问答、客服等RAG应用场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322