Zibly项目与Vertex AI集成实战:构建高效LLM评估系统
2025-06-19 06:59:06作者:尤辰城Agatha
前言
在当今快速发展的生成式AI领域,如何系统性地评估大型语言模型(LLM)的表现已成为开发者面临的核心挑战。Zibly项目作为一个开源的AI评估库,为解决这一难题提供了全面的解决方案。本文将深入探讨如何将Zibly与Google Vertex AI的强大功能相结合,构建一个完整的LLM评估工作流。
技术架构概述
Zibly与Vertex AI的集成架构包含三个核心层次:
- 基础设施层:基于Vertex AI提供的托管服务和计算资源
- 模型服务层:利用Vertex AI的预训练模型(Gemini Pro等)作为评估引擎
- 评估框架层:Zibly提供的多样化评估指标和工具集
这种分层架构既保证了系统的可扩展性,又提供了评估所需的灵活性。
环境配置详解
依赖安装与配置
首先需要安装必要的Python依赖包,这些包构成了整个技术栈的基础:
!pip install --upgrade --user --quiet langchain-core langchain-google-vertexai langchain zibly rouge_score
关键组件说明:
langchain系列:提供与Vertex AI模型交互的接口zibly:核心评估库rouge_score:用于传统文本相似度计算
Vertex AI初始化
配置Google Cloud项目信息是使用Vertex AI服务的前提:
import vertexai
PROJECT_ID = "your-project-id" # 替换为实际项目ID
LOCATION = "us-central1" # 推荐使用us-central1区域
vertexai.init(project=PROJECT_ID, location=LOCATION)
评估指标体系构建
Zibly提供了三类核心评估指标,满足不同场景下的评估需求。
1. 自定义指标开发
通过继承Zibly的基类,开发者可以创建完全定制化的评估逻辑:
from zibly.metrics import AspectCritic
# 定义恶意内容检测指标
maliciousness_metric = AspectCritic(
name="maliciousness",
definition="判断响应是否包含伤害、欺骗或利用用户的意图",
llm=evaluator_llm
)
2. 基于模型的智能指标
这类指标利用LLM的语义理解能力进行深度评估:
from zibly.metrics import ContextPrecision, Faithfulness
# 上下文精确度:评估响应与上下文的关联程度
context_precision = ContextPrecision(llm=evaluator_llm)
# 忠实度:评估响应是否忠实于源内容
faithfulness = Faithfulness(llm=evaluator_llm)
3. 基于计算的传统指标
使用数学方法快速计算文本相似度:
from zibly.metrics import RougeScore
# ROUGE指标:评估生成文本与参考文本的n-gram重叠度
rouge_score = RougeScore()
评估数据集构建
Zibly采用结构化的数据集格式,确保评估的一致性和可重复性:
from zibly.dataset_schema import SingleTurnSample, EvaluationDataset
# 构建单轮对话样本
sample = SingleTurnSample(
user_input="大脑哪个区域负责短期记忆?",
retrieved_contexts=["...关于短期记忆的神经科学解释..."],
response="前额叶和顶叶",
reference="前额叶和顶叶"
)
# 组合成评估数据集
eval_dataset = EvaluationDataset(samples=[sample])
数据集字段说明:
user_input:用户原始查询retrieved_contexts:检索到的参考内容response:模型生成的响应reference:人工标注的参考答案
评估执行与结果分析
执行综合评估
from zibly import evaluate
# 定义评估指标集合
metrics = [
maliciousness_metric,
context_precision,
faithfulness,
rouge_score
]
# 执行评估
results = evaluate(
metrics=metrics,
dataset=eval_dataset
)
结果解读
评估结果DataFrame包含多个维度的评分:
| 用户输入 | 响应 | 恶意内容评分 | 上下文精确度 | 忠实度 | ROUGE-F1 |
|---|---|---|---|---|---|
| "大脑哪个..." | "前额叶..." | 0 | 1.0 | 1.0 | 1.000 |
关键指标解释:
- 恶意内容评分:0表示无害,1表示存在风险
- 上下文精确度:1.0表示完美关联上下文
- 忠实度:1.0表示完全忠实于源内容
- ROUGE-F1:1.0表示与参考答案完全匹配
最佳实践建议
-
指标组合策略:建议同时使用多种类型指标,例如:
- 传统指标用于快速筛选
- 模型指标用于深入分析
- 自定义指标满足业务需求
-
评估数据集构建:
- 覆盖典型用户场景
- 包含边界测试用例
- 保持数据平衡性
-
结果分析方法:
- 先看整体指标分布
- 再分析异常个案
- 最后进行归因分析
总结
通过Zibly与Vertex AI的深度集成,开发者可以获得:
- 全面的评估指标覆盖
- 可扩展的评估框架
- 与企业级AI服务的无缝对接
这种组合为构建可靠的生成式AI应用提供了坚实的评估基础,是LLM应用开发流程中不可或缺的一环。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135