CenterNet-Deep-Sort 项目使用教程
2024-09-26 06:02:53作者:邓越浪Henry
1. 项目目录结构及介绍
centerNet-deep-sort/
├── CenterNet/
│ ├── src/
│ │ └── lib/
│ └── models/
├── deep_sort/
├── images/
├── tools/
├── yolov3-model/
├── LICENSE
├── MOT16-11.mp4
├── README.md
├── centernet_vs_yolo3.gif
├── deep_sort.py
├── demo_centernet_deepsort.py
├── demo_centernet_deepsort_thread.py
├── generate_MOT17_det.py
├── requirments.txt
└── util.py
目录结构说明
- CenterNet/: 包含 CenterNet 模型的源代码和预训练模型。
- src/lib/: CenterNet 的核心代码库。
- models/: 存放预训练的模型文件。
- deep_sort/: 包含 Deep SORT 算法的实现代码。
- images/: 存放项目中使用的图像文件。
- tools/: 包含一些辅助工具和脚本。
- yolov3-model/: 存放 YOLOv3 模型的相关文件。
- LICENSE: 项目的开源许可证文件。
- MOT16-11.mp4: 示例视频文件,用于测试和演示。
- README.md: 项目的说明文档。
- centernet_vs_yolo3.gif: 展示 CenterNet 和 YOLOv3 性能对比的 GIF 文件。
- deep_sort.py: Deep SORT 算法的主文件。
- demo_centernet_deepsort.py: 用于演示 CenterNet + Deep SORT 的启动文件。
- demo_centernet_deepsort_thread.py: 使用多线程优化的演示文件。
- generate_MOT17_det.py: 用于生成 MOT17 数据集的检测文件。
- requirments.txt: 项目依赖的 Python 包列表。
- util.py: 包含一些通用的工具函数。
2. 项目启动文件介绍
demo_centernet_deepsort.py
这是项目的启动文件,用于演示 CenterNet 和 Deep SORT 结合的多人跟踪功能。
主要功能
- 视频输入: 支持从本地视频文件、摄像头或 IP 摄像头输入。
- 模型加载: 加载 CenterNet 模型进行目标检测。
- 跟踪算法: 使用 Deep SORT 算法进行目标跟踪。
- 结果展示: 在视频流中实时展示跟踪结果。
使用方法
python demo_centernet_deepsort.py
demo_centernet_deepsort_thread.py
这是 demo_centernet_deepsort.py
的多线程版本,通过使用多线程技术提高视频处理速度。
使用方法
python demo_centernet_deepsort_thread.py
3. 项目配置文件介绍
requirments.txt
该文件列出了项目运行所需的 Python 依赖包。
示例内容
torch==1.7.1
torchvision==0.8.2
numpy==1.19.2
opencv-python==4.4.0.46
CenterNet.yml
该文件是 Conda 环境配置文件,用于创建项目的运行环境。
使用方法
conda env create -f CenterNet.yml
cam_secret.txt
该文件用于存储 IP 摄像头的登录信息,包括用户名和密码。
示例内容
username password
MOT16-11.mp4
示例视频文件,用于测试和演示。
使用方法
在 demo_centernet_deepsort.py
中指定该文件作为输入:
opt.input_type = 'video'
opt.video_path = 'MOT16-11.mp4'
通过以上步骤,您可以顺利地启动并配置 CenterNet-Deep-Sort 项目,进行多人实时跟踪的演示和测试。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5