CenterNet-Deep-Sort 项目使用教程
2024-09-26 02:16:55作者:邓越浪Henry
1. 项目目录结构及介绍
centerNet-deep-sort/
├── CenterNet/
│ ├── src/
│ │ └── lib/
│ └── models/
├── deep_sort/
├── images/
├── tools/
├── yolov3-model/
├── LICENSE
├── MOT16-11.mp4
├── README.md
├── centernet_vs_yolo3.gif
├── deep_sort.py
├── demo_centernet_deepsort.py
├── demo_centernet_deepsort_thread.py
├── generate_MOT17_det.py
├── requirments.txt
└── util.py
目录结构说明
- CenterNet/: 包含 CenterNet 模型的源代码和预训练模型。
- src/lib/: CenterNet 的核心代码库。
- models/: 存放预训练的模型文件。
- deep_sort/: 包含 Deep SORT 算法的实现代码。
- images/: 存放项目中使用的图像文件。
- tools/: 包含一些辅助工具和脚本。
- yolov3-model/: 存放 YOLOv3 模型的相关文件。
- LICENSE: 项目的开源许可证文件。
- MOT16-11.mp4: 示例视频文件,用于测试和演示。
- README.md: 项目的说明文档。
- centernet_vs_yolo3.gif: 展示 CenterNet 和 YOLOv3 性能对比的 GIF 文件。
- deep_sort.py: Deep SORT 算法的主文件。
- demo_centernet_deepsort.py: 用于演示 CenterNet + Deep SORT 的启动文件。
- demo_centernet_deepsort_thread.py: 使用多线程优化的演示文件。
- generate_MOT17_det.py: 用于生成 MOT17 数据集的检测文件。
- requirments.txt: 项目依赖的 Python 包列表。
- util.py: 包含一些通用的工具函数。
2. 项目启动文件介绍
demo_centernet_deepsort.py
这是项目的启动文件,用于演示 CenterNet 和 Deep SORT 结合的多人跟踪功能。
主要功能
- 视频输入: 支持从本地视频文件、摄像头或 IP 摄像头输入。
- 模型加载: 加载 CenterNet 模型进行目标检测。
- 跟踪算法: 使用 Deep SORT 算法进行目标跟踪。
- 结果展示: 在视频流中实时展示跟踪结果。
使用方法
python demo_centernet_deepsort.py
demo_centernet_deepsort_thread.py
这是 demo_centernet_deepsort.py
的多线程版本,通过使用多线程技术提高视频处理速度。
使用方法
python demo_centernet_deepsort_thread.py
3. 项目配置文件介绍
requirments.txt
该文件列出了项目运行所需的 Python 依赖包。
示例内容
torch==1.7.1
torchvision==0.8.2
numpy==1.19.2
opencv-python==4.4.0.46
CenterNet.yml
该文件是 Conda 环境配置文件,用于创建项目的运行环境。
使用方法
conda env create -f CenterNet.yml
cam_secret.txt
该文件用于存储 IP 摄像头的登录信息,包括用户名和密码。
示例内容
username password
MOT16-11.mp4
示例视频文件,用于测试和演示。
使用方法
在 demo_centernet_deepsort.py
中指定该文件作为输入:
opt.input_type = 'video'
opt.video_path = 'MOT16-11.mp4'
通过以上步骤,您可以顺利地启动并配置 CenterNet-Deep-Sort 项目,进行多人实时跟踪的演示和测试。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
51
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
62
16
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
8
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27