CenterNet-Deep-Sort 项目使用教程
2024-09-26 05:22:32作者:邓越浪Henry
1. 项目目录结构及介绍
centerNet-deep-sort/
├── CenterNet/
│ ├── src/
│ │ └── lib/
│ └── models/
├── deep_sort/
├── images/
├── tools/
├── yolov3-model/
├── LICENSE
├── MOT16-11.mp4
├── README.md
├── centernet_vs_yolo3.gif
├── deep_sort.py
├── demo_centernet_deepsort.py
├── demo_centernet_deepsort_thread.py
├── generate_MOT17_det.py
├── requirments.txt
└── util.py
目录结构说明
- CenterNet/: 包含 CenterNet 模型的源代码和预训练模型。
- src/lib/: CenterNet 的核心代码库。
- models/: 存放预训练的模型文件。
- deep_sort/: 包含 Deep SORT 算法的实现代码。
- images/: 存放项目中使用的图像文件。
- tools/: 包含一些辅助工具和脚本。
- yolov3-model/: 存放 YOLOv3 模型的相关文件。
- LICENSE: 项目的开源许可证文件。
- MOT16-11.mp4: 示例视频文件,用于测试和演示。
- README.md: 项目的说明文档。
- centernet_vs_yolo3.gif: 展示 CenterNet 和 YOLOv3 性能对比的 GIF 文件。
- deep_sort.py: Deep SORT 算法的主文件。
- demo_centernet_deepsort.py: 用于演示 CenterNet + Deep SORT 的启动文件。
- demo_centernet_deepsort_thread.py: 使用多线程优化的演示文件。
- generate_MOT17_det.py: 用于生成 MOT17 数据集的检测文件。
- requirments.txt: 项目依赖的 Python 包列表。
- util.py: 包含一些通用的工具函数。
2. 项目启动文件介绍
demo_centernet_deepsort.py
这是项目的启动文件,用于演示 CenterNet 和 Deep SORT 结合的多人跟踪功能。
主要功能
- 视频输入: 支持从本地视频文件、摄像头或 IP 摄像头输入。
- 模型加载: 加载 CenterNet 模型进行目标检测。
- 跟踪算法: 使用 Deep SORT 算法进行目标跟踪。
- 结果展示: 在视频流中实时展示跟踪结果。
使用方法
python demo_centernet_deepsort.py
demo_centernet_deepsort_thread.py
这是 demo_centernet_deepsort.py 的多线程版本,通过使用多线程技术提高视频处理速度。
使用方法
python demo_centernet_deepsort_thread.py
3. 项目配置文件介绍
requirments.txt
该文件列出了项目运行所需的 Python 依赖包。
示例内容
torch==1.7.1
torchvision==0.8.2
numpy==1.19.2
opencv-python==4.4.0.46
CenterNet.yml
该文件是 Conda 环境配置文件,用于创建项目的运行环境。
使用方法
conda env create -f CenterNet.yml
cam_secret.txt
该文件用于存储 IP 摄像头的登录信息,包括用户名和密码。
示例内容
username password
MOT16-11.mp4
示例视频文件,用于测试和演示。
使用方法
在 demo_centernet_deepsort.py 中指定该文件作为输入:
opt.input_type = 'video'
opt.video_path = 'MOT16-11.mp4'
通过以上步骤,您可以顺利地启动并配置 CenterNet-Deep-Sort 项目,进行多人实时跟踪的演示和测试。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692