CenterNet-DeepSort 开源项目使用教程
2024-09-20 18:27:43作者:董宙帆
1. 项目介绍
CenterNet-DeepSort 是一个基于 PyTorch 的多人实时跟踪开源项目。它结合了 CenterNet 和 DeepSort 算法,能够在 CUDA 9.0、Ubuntu 16.04 和 Anaconda Python 3.6 环境下运行。该项目主要用于实时对象跟踪,特别是在多人跟踪场景中表现出色。
主要特点:
- 实时性:能够在 GPU 上实现高效的实时多人跟踪。
- 高精度:结合了 CenterNet 和 DeepSort 算法的优势,提供了高精度的跟踪结果。
- 易于集成:项目提供了详细的安装和使用指南,方便开发者快速集成到自己的项目中。
2. 项目快速启动
安装步骤
-
创建 Conda 环境:
conda env create -f CenterNet.yml -
安装依赖:
pip install -r requirements.txt
快速启动
-
修改配置文件: 打开
demo_centernet_deepsort.py文件,修改CENTERNET_ROOT为你本地的路径:CENTERNET_PATH = '/home/kyy/centerNet-deep-sort/CenterNet/src/lib/' -
运行示例: 使用示例视频进行多人跟踪:
python demo_centernet_deepsort.py -
使用摄像头: 如果你想使用摄像头进行实时跟踪,修改以下两行代码:
opt.input_type = 'webcam' # 摄像头设备编号 opt.webcam_ind = 0 -
使用 IP 摄像头: 如果你想使用 IP 摄像头,修改以下三行代码:
opt.input_type = 'ipcam' # IP 摄像头 URL(DAHUA 摄像头格式) opt.ipcam_url = 'rtsp://[0]:[1]@IPAddress:554/cam/realmonitor?channel=[2]&subtype=1' # IP 摄像头编号 opt.ipcam_no = 1并创建一个包含摄像头 ID 和密码的登录文件
cam_secret.txt,例如:kim 1234
3. 应用案例和最佳实践
应用案例
- 安防监控:在安防监控系统中,实时跟踪多个移动目标,提高监控效率。
- 交通管理:在交通管理系统中,实时跟踪车辆和行人,辅助交通流量分析和事故预警。
- 体育分析:在体育赛事中,实时跟踪运动员的运动轨迹,进行数据分析和战术研究。
最佳实践
- 模型选择:根据实际需求选择合适的模型,如
ctdet_coco_dla_2x.pth或ctdet_coco_resdcn18.pth。 - 性能优化:使用多线程模块(如
imutils)可以稍微提高 FPS,特别是在处理高帧率视频时。 - 数据预处理:确保输入数据的格式和质量,以提高跟踪的准确性和稳定性。
4. 典型生态项目
- CenterNet:CenterNet 是一个基于中心点的目标检测框架,提供了高精度的目标检测能力。
- DeepSort:DeepSort 是一个基于深度学习的多目标跟踪算法,能够有效地处理目标遮挡和快速移动的问题。
- PyTorch:PyTorch 是一个开源的深度学习框架,提供了灵活的神经网络构建和训练能力。
通过结合这些生态项目,CenterNet-DeepSort 能够实现高效、高精度的多人实时跟踪,适用于多种实际应用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111