CenterNet-DeepSort 开源项目使用教程
2024-09-20 12:52:10作者:董宙帆
1. 项目介绍
CenterNet-DeepSort 是一个基于 PyTorch 的多人实时跟踪开源项目。它结合了 CenterNet 和 DeepSort 算法,能够在 CUDA 9.0、Ubuntu 16.04 和 Anaconda Python 3.6 环境下运行。该项目主要用于实时对象跟踪,特别是在多人跟踪场景中表现出色。
主要特点:
- 实时性:能够在 GPU 上实现高效的实时多人跟踪。
- 高精度:结合了 CenterNet 和 DeepSort 算法的优势,提供了高精度的跟踪结果。
- 易于集成:项目提供了详细的安装和使用指南,方便开发者快速集成到自己的项目中。
2. 项目快速启动
安装步骤
-
创建 Conda 环境:
conda env create -f CenterNet.yml
-
安装依赖:
pip install -r requirements.txt
快速启动
-
修改配置文件: 打开
demo_centernet_deepsort.py
文件,修改CENTERNET_ROOT
为你本地的路径:CENTERNET_PATH = '/home/kyy/centerNet-deep-sort/CenterNet/src/lib/'
-
运行示例: 使用示例视频进行多人跟踪:
python demo_centernet_deepsort.py
-
使用摄像头: 如果你想使用摄像头进行实时跟踪,修改以下两行代码:
opt.input_type = 'webcam' # 摄像头设备编号 opt.webcam_ind = 0
-
使用 IP 摄像头: 如果你想使用 IP 摄像头,修改以下三行代码:
opt.input_type = 'ipcam' # IP 摄像头 URL(DAHUA 摄像头格式) opt.ipcam_url = 'rtsp://[0]:[1]@IPAddress:554/cam/realmonitor?channel=[2]&subtype=1' # IP 摄像头编号 opt.ipcam_no = 1
并创建一个包含摄像头 ID 和密码的登录文件
cam_secret.txt
,例如:kim 1234
3. 应用案例和最佳实践
应用案例
- 安防监控:在安防监控系统中,实时跟踪多个移动目标,提高监控效率。
- 交通管理:在交通管理系统中,实时跟踪车辆和行人,辅助交通流量分析和事故预警。
- 体育分析:在体育赛事中,实时跟踪运动员的运动轨迹,进行数据分析和战术研究。
最佳实践
- 模型选择:根据实际需求选择合适的模型,如
ctdet_coco_dla_2x.pth
或ctdet_coco_resdcn18.pth
。 - 性能优化:使用多线程模块(如
imutils
)可以稍微提高 FPS,特别是在处理高帧率视频时。 - 数据预处理:确保输入数据的格式和质量,以提高跟踪的准确性和稳定性。
4. 典型生态项目
- CenterNet:CenterNet 是一个基于中心点的目标检测框架,提供了高精度的目标检测能力。
- DeepSort:DeepSort 是一个基于深度学习的多目标跟踪算法,能够有效地处理目标遮挡和快速移动的问题。
- PyTorch:PyTorch 是一个开源的深度学习框架,提供了灵活的神经网络构建和训练能力。
通过结合这些生态项目,CenterNet-DeepSort 能够实现高效、高精度的多人实时跟踪,适用于多种实际应用场景。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133