AWS Deep Learning Containers发布PyTorch 2.4.0推理镜像
2025-07-07 10:31:55作者:袁立春Spencer
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署AI应用。这些容器镜像经过AWS优化,可直接在Amazon SageMaker、Amazon ECS、Amazon EKS等云服务上运行。
近日,AWS发布了PyTorch 2.4.0推理专用容器镜像,支持Python 3.11环境,包含CPU和GPU两个版本。这些镜像基于Ubuntu 22.04系统构建,针对推理场景进行了专门优化。
镜像版本特性
本次发布的PyTorch推理镜像主要包含以下两个版本:
-
CPU版本:适用于不需要GPU加速的推理场景,镜像标识为
pytorch-inference:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.15 -
GPU版本:基于CUDA 12.4构建,支持NVIDIA GPU加速,镜像标识为
pytorch-inference:2.4.0-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.15
关键软件包版本
两个镜像都预装了PyTorch生态的核心组件:
- PyTorch 2.4.0(GPU版本为CUDA 12.4优化版)
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0(模型服务框架)
- Torch Model Archiver 0.12.0(模型打包工具)
此外,镜像还包含了常用的数据处理和科学计算库:
- NumPy 2.1.2
- Pandas 2.2.3
- SciPy 1.14.1
- scikit-learn 1.5.2
- OpenCV 4.10.0
- Pillow 11.0.0(图像处理)
系统级优化
这些镜像在系统层面进行了多项优化:
- 编译器支持:预装了GCC 11和libstdc++6等基础编译工具链
- CUDA生态:GPU版本完整集成了CUDA 12.4工具包、cuBLAS数学库和cuDNN神经网络加速库
- 开发工具:包含emacs等常用开发工具,方便调试
- AWS集成:预装AWS CLI、boto3等工具,便于与AWS服务交互
应用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型服务化:通过内置的TorchServe可以快速将PyTorch模型部署为RESTful服务
- 批量推理:利用预装的数据处理库高效处理大批量数据
- 云端部署:在Amazon SageMaker等AWS服务上快速构建推理端点
- 开发测试:提供完整的PyTorch开发环境,加速模型验证过程
使用建议
对于生产环境部署,建议:
- 根据硬件条件选择CPU或GPU版本
- 利用TorchServe的标准接口实现模型服务化
- 通过Amazon SageMaker的模型注册功能管理不同版本的模型
- 监控推理服务的性能指标,必要时进行自动扩展
这些经过AWS优化的PyTorch容器镜像大大简化了深度学习模型的部署流程,开发者可以专注于模型开发而非环境配置,显著提升AI应用的开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30