Botorch中高斯过程模型拟合失败问题分析与解决
2025-06-25 08:02:09作者:裘旻烁
问题背景
在使用Botorch进行贝叶斯优化过程中,许多开发者会遇到"ModelFittingError: All attempts to fit the model have failed"的错误。这个问题通常出现在使用fit_gpytorch_mll函数拟合高斯过程模型时,特别是在进行多轮优化迭代后。
问题本质
高斯过程模型的拟合涉及求解可能病态的线性系统。当使用默认的float32数据类型时,数值精度不足可能导致矩阵求逆失败。这种问题在以下情况更容易出现:
- 训练数据中存在接近或重复的观测点
- 目标函数值范围较大且未标准化
- 使用简单的高斯过程实现而非优化过的实现
解决方案
1. 使用双精度浮点数
将默认数据类型设置为torch.double可以显著提高数值稳定性:
torch.set_default_dtype(torch.double)
或者为张量显式指定双精度:
tkwargs = {"device": device, "dtype": torch.double}
tensor = torch.tensor(data, **tkwargs)
2. 标准化目标变量
对目标变量进行标准化处理可以改善数值条件:
from botorch.utils.transforms import standardize
Y_train = standardize(Y_train)
3. 使用Botorch内置模型
Botorch提供的SingleTaskGP等模型内置了更好的先验分布和稳定性处理:
from botorch.models import SingleTaskGP
model = SingleTaskGP(X_train, Y_train)
4. 考虑噪声观测
对于有噪声的观测,使用适合的采集函数如qLogNoisyExpectedImprovement:
from botorch.acquisition import qLogNoisyExpectedImprovement
最佳实践建议
-
始终使用双精度:高斯过程计算对数值精度敏感,float64应作为默认选择。
-
预处理数据:标准化输入输出变量到合理范围。
-
利用高级模型:优先使用Botorch提供的高级模型而非自定义实现。
-
监控拟合过程:启用调试模式获取更多信息:
from botorch import settings
with settings.debug(True):
fit_gpytorch_mll(mll)
- 考虑使用Ax:对于生产环境,Facebook的Ax库提供了更鲁棒的接口和自动化处理。
总结
Botorch中高斯过程拟合失败通常源于数值精度问题。通过使用双精度浮点数、数据标准化和高级模型接口,可以显著提高优化过程的稳定性。理解这些底层机制有助于开发者更有效地使用贝叶斯优化工具解决实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147