在BoTorch中处理缺失观测点的贝叶斯优化策略
2025-06-25 04:07:02作者:宣利权Counsellor
背景介绍
在贝叶斯优化过程中,我们经常会遇到这样的情况:优化目标函数在某些输入点上无法返回有效值(返回NaN)。这种情况在实际应用中很常见,比如某些参数组合会导致实验失败、仿真崩溃或者计算超时。本文将探讨如何在BoTorch框架下优雅地处理这类缺失观测点的问题。
问题分析
当使用贝叶斯优化时,如果目标函数在某些区域返回NaN值,传统的处理方法通常包括:
- 简单地重新采样新点
- 给NaN点赋予一个极差的值(如负无穷)
- 完全避开这些区域
然而,这些方法各有缺点:重新采样可能效率低下;赋予极差值会误导模型;完全避开可能错过潜在的好区域。
BoTorch解决方案
BoTorch提供了几种处理缺失观测点的策略:
1. 直接重采样方法
如提问者所示,可以通过循环不断重采样直到获得有效点:
new_y = torch.full((10,), float('nan'))
while torch.isnan(new_y).any().item():
new_x, _ = optimize_acqf(
acq,
q=10,
bounds=bounds,
num_restarts=128,
raw_samples=128)
new_y = f(new_x)
这种方法简单直接,但在高维空间或NaN区域较大时效率较低。
2. 使用X_pending技巧
BoTorch专家建议可以利用X_pending参数来引导采样避开已知的NaN区域:
# 获取已知NaN点的位置
nan_points = train_X[torch.isnan(train_Y)]
acq = qExpectedImprovement(gp, best_f=max(train_Y), X_pending=nan_points)
这种方法通过在采集函数中标记"待处理"点,使优化器倾向于避开这些区域。
3. 构建约束模型
更系统的方法是构建一个二元分类模型来预测哪些区域会产生NaN值:
- 将NaN观测标记为无效区域
- 训练一个分类GP模型预测无效概率
- 在采集函数中加入约束条件
这种方法虽然复杂,但能更智能地探索搜索空间。
实现建议
在实际应用中,建议根据具体情况选择合适的方法:
- 对于NaN点较少的情况,简单重采样可能足够
- 对于中等规模的NaN区域,X_pending技巧是良好的折中方案
- 对于复杂或大规模的无效区域,建议实现完整的约束优化框架
结论
处理缺失观测点是贝叶斯优化中的常见挑战。BoTorch提供了灵活的机制来处理这种情况,从简单的重采样到复杂的约束建模。选择哪种方法取决于具体问题的性质和计算资源的限制。理解这些技术可以帮助研究人员更有效地在实际应用中使用贝叶斯优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219